31 research outputs found

    A study of the influence of particle gradation in bonded assemblies

    Get PDF
    The discrete element method (DEM) has been used extensively to study soil, rock, and masonry behavior because of its ability to model the materials as individual particles or bonded clumps of particles. DEM allows for examination of the macro- and micro-scale response and provides a means to study the fundamental material behavior, but it is still considered computationally expensive in relation to other methods. To lower computational costs, the smallest particle sizes are often considered negligible and are left out of the model. Additionally, rock or intact materials are often modeled as a bonded assembly of uniform spheres. To date, few research studies have considered the influence of particle size and gradation on the strength and fracture behavior of bonded assemblies. This research aims to examine the influence of particle gradation in bonded assemblies through laboratory calibrated DEM simulations. Additionally, the role of the cement-sized particles will also be investigated. While the overall motivation for this study is related to the behavior of mortar in historic preservation applications, the preliminary studies can be directly applied to other geo-related materials such as cemented sands and rock specimens. This study addresses two critical questions associated with the computational efficiency of bonded assembly models (1) Does particle gradation influence the overall strength and fracture behavior, and (2) Do the smallest size particles influence the overall results enough to justify the additional computational cost? In this study two mortar materials, varying only in sand particle gradation, are subjected to physical laboratory compression strength tests to assess whether or not the influence is observed in physical experiments. Additionally, the compression test results act as a means of calibrating the simulations in DEM. These simulations will examine the macro- and micro-scale influence of particle gradation on the strength of bonded assemblies. Additional simulations are used to examine the effects of modeling the cement-sized particles in the bonded assembly. The results of the physical experiments and the development of the DEM simulations are discussed herein

    MEVTV Workshop on Tectonic Features on Mars

    Get PDF
    The state of knowledge of tectonic features on Mars was determined and kinematic and mechanical models were assessed for their origin. Three sessions were held: wrinkle ridges and compressional structure; strike-slip faults; and extensional structures. Each session began with an overview of the features under discussion. In the case of wrinkle ridges and extensional structures, the overview was followed by keynote addresses by specialists working on similar structures on the Earth. The first session of the workshop focused on the controversy over the relative importance of folding, faulting, and intrusive volcanism in the origin of wrinkle ridges. The session ended with discussions of the origin of compressional flank structures associated with Martian volcanoes and the relationship between the volcanic complexes and the inferred regional stress field. The second day of the workshop began with the presentation and discussion of evidence for strike-slip faults on Mars at various scales. In the last session, the discussion of extensional structures ranged from the origin of grabens, tension cracks, and pit-crater chains to the origin of Valles Marineris canyons. Shear and tensile modes of brittle failure in the formation of extensional features and the role of these failure modes in the formation of pit-crater chains and the canyons of Valles Marineris were debated. The relationship of extensional features to other surface processes, such as carbonate dissolution (karst) were also discussed

    Feasibility of Additive Manufactured Materials for Use in Geotechnical Laboratory Testing Applications

    Get PDF
    The factors affecting the positive volumetric strain, or dilatancy, typically observed in response to shearing of a dense granular material have long been investigated; however, there still lacks a direct relationship between particle shapes and the resulting dilatant response. The typical Mohr-Coulomb strength parameter associated with granular material is known as the effective friction angle (φ’). For a dense granular assemblage, the peak friction angle has been described as being comprised of a dilatant friction angle (φ’d) component and a critical state friction angle (φ’cv) component. While the topic of dilatancy and factors (both inherent and extrinsic) affecting its behavior are understood by researchers, added complexity exists due to the dependency of the dilatation angle on features such as density, confining stress, and stress path. With continuous innovation in additive manufacturing (AM), the technology has encompassed a broader spectrum of users including scientists and engineers. AM provides a new avenue for understanding the effect of particle shape on the dilatant response of granular material by providing the ability to change shape geometry while maintaining consistent material properties. It is hypothesized that an AM-fabricated analogue soil sample can then be used in a laboratory setting. A preliminary investigation was carried out to identify the various AM technologies available and their associated materials. After examining the strength and stiffness characteristics of the various materials, two separate AM technologies were selected. An analogue soil sample was fabricated using each device and was tested in consolidated drained triaxial compression. The analogue soils provided a shearing behavior similar to that of natural granular materials, thus indicating its feasibility for additional studies in geotechnical engineering

    A Sleep to Remember: The Effects of Sleep on Memory.

    Get PDF
    For centuries, the functions of sleep have been researched. Multiple theories have been developed, but even now, scientists are unable to produce a conclusive explanation as to why we sleep. It is evident that sleep is vital, as even in animals, it has been argued that sleep deprivation leads to serious consequences. More recently, research has suggested that sleep plays a role in memory consolidation. This review aims to bring together the evidence concerning the link between sleep and different memory sub-classifications (episodic memory, semantic memory, procedural memory and conditioning) and its potential clinical application will be discussed

    Alinhamento interpessoal, representacional e morfossintĂĄtico na GramĂĄtica Discursivo-Funcional

    Get PDF
    Este artigo se debruça sobre o mapeamento entre os NĂ­veis Interpessoal, Representacional e MorfossintĂĄtico da gramĂĄtica, o chamado alinhamento, segundo o arcabouço da GramĂĄtica Discursivo-Funcional (GDF). PropĂ”e uma tipologia das lĂ­nguas baseada no que a sua organização morfossintĂĄtica codifica: distinçÔes pragmĂĄticas (p.ex. em Tagalo), distinçÔes semĂąnticas (p.ex. em AchĂ©m), ou distinçÔes inerentes Ă  morfossintaxe (p.ex. em InglĂȘs, Basco ou a lĂ­ngua Kham). A inclusĂŁo tanto do Sujeito como do Objeto e de lĂ­nguas tanto acusativas como ergativas no tratamento do alinhamento morfossintĂĄtico permitiu-nos abranger tipos tipologicamente mais variĂĄveis e demonstrar o potencial da GDF para a anĂĄlise contrastiva das lĂ­nguas.<br>Within the framework of Functional Discourse Grammar (FDG), alignment concerns the relations between the Interpersonal, Representational and Morphosyntactic Levels of grammar. This article proposes a typology of languages based upon what we find to be encoded in their morphosyntactic organization: pragmatic distinctions (as in Tagalog), semantic distinctions (as in Acheh), or distinctions inherent to the morphosyntax (as in English, Basque and Kham). By including both subject and object, and both accusative and ergative languages in our treatment of morphosyntactic alignment, we provide a better coverage of typological variation and show the potential of FDG for cross-linguistic analysis

    Methods to Recruit Hard-to-Reach Groups: Comparing Two Chain Referral Sampling Methods of Recruiting Injecting Drug Users Across Nine Studies in Russia and Estonia

    Get PDF
    Evidence suggests rapid diffusion of injecting drug use and associated outbreaks of HIV among injecting drug users (IDUs) in the Russian Federation and Eastern Europe. There remains a need for research among non-treatment and community-recruited samples of IDUs to better estimate the dynamics of HIV transmission and to improve treatment and health services access. We compare two sampling methodologies “respondent-driven sampling” (RDS) and chain referral sampling using “indigenous field workers” (IFS) to investigate the relative effectiveness of RDS to reach more marginal and hard-to-reach groups and perhaps to include those with the riskiest behaviour around HIV transmission. We evaluate the relative efficiency of RDS to recruit a lower cost sample in comparison to IFS. We also provide a theoretical comparison of the two approaches. We draw upon nine community-recruited surveys of IDUs undertaken in the Russian Federation and Estonia between 2001 and 2005 that used either IFS or RDS. Sampling effects on the demographic composition and injecting risk behaviours of the samples generated are compared using multivariate analysis. Our findings suggest that RDS does not appear to recruit more marginalised sections of the IDU community nor those engaging in riskier injecting behaviours in comparison with IFS. RDS appears to have practical advantages over IFS in the implementation of fieldwork in terms of greater recruitment efficiency and safety of field workers, but at a greater cost. Further research is needed to assess how the practicalities of implementing RDS in the field compromises the requirements mandated by the theoretical guidelines of RDS for adjusting the sample estimates to obtain estimates of the wider IDU population

    Gamma-ray and radio properties of six pulsars detected by the fermi large area telescope

    Get PDF
    We report the detection of pulsed Îł-rays for PSRs J0631+1036, J0659+1414, J0742-2822, J1420-6048, J1509-5850, and J1718-3825 using the Large Area Telescope on board the Fermi Gamma-ray Space Telescope (formerly known as GLAST). Although these six pulsars are diverse in terms of their spin parameters, they share an important feature: their Îł-ray light curves are (at least given the current count statistics) single peaked. For two pulsars, there are hints for a double-peaked structure in the light curves. The shapes of the observed light curves of this group of pulsars are discussed in the light of models for which the emission originates from high up in the magnetosphere. The observed phases of the Îł-ray light curves are, in general, consistent with those predicted by high-altitude models, although we speculate that the Îł-ray emission of PSR J0659+1414, possibly featuring the softest spectrum of all Fermi pulsars coupled with a very low efficiency, arises from relatively low down in the magnetosphere. High-quality radio polarization data are available showing that all but one have a high degree of linear polarization. This allows us to place some constraints on the viewing geometry and aids the comparison of the Îł-ray light curves with high-energy beam models
    corecore