1,201 research outputs found

    The drosophila boundary element-associated factors BEAF-32A and BEAF-32B affect chromatin structure

    Get PDF
    Binding sites for the Drosophila boundary element-associated factors BEAF-32A and -32B are required for the insulator activity of the scs\u27 insulator. BEAF binds to hundreds of sites on polytene chromosomes, indicating that BEAF-utilizing insulators are an important class in Drosophila. To gain insight into the role of BEAF in flies, we designed a transgene encoding a dominant-negative form of BEAF under GAL4 UAS control. This BID protein encompasses the BEAF self-interaction domain. Evidence is provided that BID interacts with BEAF and interferes with scs\u27 insulator activity and that BEAF is the major target of BID in vivo. BID expression during embryogenesis is lethal, implying that BEAF is required during early development. Expression of BID in eye imaginal discs leads to a rough-eye phenotype, and this phenotype is rescued by a third copy of the BEAF gene. Expression of BID in salivary glands leads to a global disruption of polytene chromatin structure, and this disruption is largely rescued by an extra copy of BEAF. BID expression also enhances position-effect variegation (PEV) of the wm4h allele and a yellow transgene inserted into the pericentric heterochromatin of chromosome 2R, while a third copy of the BEAF gene suppresses PEV of both genes. These results support the hypothesis that BEAF-dependent insulators function by affecting chromatin structure or dynamics. Copyright © 2006 by the Genetics Society of America

    Carbon dioxide mediates the response to temperature and water activity levels in Aspergillus flavus during infection of maize kernels

    Get PDF
    Aspergillus flavus is a saprophytic fungus that may colonize several important crops, including cotton, maize, peanuts and tree nuts. Concomitant with A. flavus colonization is its potential to secrete mycotoxins, of which the most prominent is aflatoxin. Temperature, water activity (aw) and carbon dioxide (CO2) are three environmental factors shown to influence the fungus-plant interaction, which are predicted to undergo significant changes in the next century. In this study, we used RNA sequencing to better understand the transcriptomic response of the fungus to aw, temperature, and elevated CO2 levels. We demonstrate that aflatoxin (AFB1) production on maize grain was altered by water availability, temperature and CO2. RNA-Sequencing data indicated that several genes, and in particular those involved in the biosynthesis of secondary metabolites, exhibit different responses to water availability or temperature stress depending on the atmospheric CO2 content. Other gene categories affected by CO2 levels alone (350 ppm vs. 1000 ppm at 30 °C/0.99 aw), included amino acid metabolism and folate biosynthesis. Finally, we identified two gene networks significantly influenced by changes in CO2 levels that contain several genes related to cellular replication and transcription. These results demonstrate that changes in atmospheric CO2 under climate change scenarios greatly influences the response of A. flavus to water and temperature when colonizing maize grain

    Prospectus, October 21, 2004

    Get PDF
    https://spark.parkland.edu/prospectus_2004/1024/thumbnail.jp

    Interactions between water activity and temperature on the Aspergillus flavus transcriptome and aflatoxin B1 production

    Get PDF
    Effects of Aspergillus flavus colonization of maize kernels under different water activities (aw; 0.99 and 0.91) and temperatures (30, 37 °C) on (a) aflatoxin B1 (AFB1) production and (b) the transcriptome using RNAseq were examined. There was no significant difference (p = 0.05) in AFB1 production at 30 and 37 °C and 0.99 aw. However, there was a significant (p = 0.05) increase in AFB1 at 0.91 aw at 37 °C when compared with 30 °C/0.99 aw. Environmental stress effects using gene ontology enrichment analysis of the RNA-seq results for increasing temperature at 0.99 and 0.91 aw showed differential expression of 2224 and 481 genes, respectively. With decreasing water availability, 4307 were affected at 30 °C and 702 genes at 37 °C. Increasing temperature from 30 to 37 °C at both aw levels resulted in 12 biological processes being upregulated and 9 significantly downregulated. Decreasing aw at both temperatures resulted in 22 biological processes significantly upregulated and 25 downregulated. The interacting environmental factors influenced functioning of the secondary metabolite gene clusters for aflatoxins and cyclopiazonic acid (CPA). An elevated number of genes were co-regulated by both aw and temperature. An interaction effect for 4 of the 25 AFB1 genes, including regulatory and transcription activators occurred. For CPA, all 5 biosynthetic genes were affected by aw stress, regardless of temperature. The molecular regulation of A. flavus in maize is discussed

    Interactions between water activity and temperature on the Aspergillus flavus transcriptome and aflatoxin B1 production

    Get PDF
    Effects of Aspergillus flavus colonization of maize kernels under different water activities (aw; 0.99 and 0.91) and temperatures (30, 37 °C) on (a) aflatoxin B1 (AFB1) production and (b) the transcriptome using RNAseq were examined. There was no significant difference (p = 0.05) in AFB1 production at 30 and 37 °C and 0.99 aw. However, there was a significant (p = 0.05) increase in AFB1 at 0.91 aw at 37 °C when compared with 30 °C/0.99 aw. Environmental stress effects using gene ontology enrichment analysis of the RNA-seq results for increasing temperature at 0.99 and 0.91 aw showed differential expression of 2224 and 481 genes, respectively. With decreasing water availability, 4307 were affected at 30 °C and 702 genes at 37 °C. Increasing temperature from 30 to 37 °C at both aw levels resulted in 12 biological processes being upregulated and 9 significantly downregulated. Decreasing aw at both temperatures resulted in 22 biological processes significantly upregulated and 25 downregulated. The interacting environmental factors influenced functioning of the secondary metabolite gene clusters for aflatoxins and cyclopiazonic acid (CPA). An elevated number of genes were co-regulated by both aw and temperature. An interaction effect for 4 of the 25 AFB1 genes, including regulatory and transcription activators occurred. For CPA, all 5 biosynthetic genes were affected by aw stress, regardless of temperature. The molecular regulation of A. flavus in maize is discussed

    Automatic yield-line analysis of practical slab configurations via discontinuity layout optimization

    Get PDF
    The yield-line method provides a powerful means of rapidly estimating the ultimate load that can be carried by a reinforced concrete slab. The method can reveal hidden reserves of strength in existing slabs and can lead to highly economic slabs when used in design. Originally conceived before the widespread availability of computers, the yield-line method subsequently proved difficult to computerize, limiting its appeal in recent years. However, it was recently demonstrated that the discontinuity layout optimization (DLO) procedure could be used to systematically automate the method, and various isotropically reinforced, uniformly loaded slab examples were used to demonstrate this. The main purpose of this paper is to demonstrate that the DLO procedure can also be applied to a wide range of more practical slab problems, for example involving orthotropic reinforcement, internal columns, and point, line, and patch loads. The efficacy of the procedure is demonstrated via application to a variety of example problems from the literature; for all problems considered solutions are presented that improve upon existing numerical solutions. Furthermore, in a number of cases, solutions derived using previously proposed automated yield-line analysis procedures are shown to be highly nonconservative

    Measurement of [OIII] Emission in Lyman Break Galaxies

    Full text link
    Measurements of [OIII] emission in Lyman Break galaxies (LBGs) at z>3 are presented. Four galaxies were observed with narrow-band filters using the Near-IR Camera on the Keck I 10-m telescope. A fifth galaxy was observed spectroscopically during the commissioning of NIRSPEC, the new infrared spectrometer on Keck II. The emission-line spectrum is used to place limits on the metallicity. Comparing these new measurements with others available from the literature, we find that strong oxygen emission in LBGs may suggest sub-solar metallicity for these objects. The [OIII]5007 line is also used to estimate the star formation rate (SFR) of the LBGs. The inferred SFRs are higher than those estimated from the UV continuum, and may be evidence for dust extinction.Comment: 25 pages, including 6 figures. Accepted for publication in Ap

    Microbiota of maize kernels as influenced by Aspergillus flavus infection in susceptible and resistant inbreds

    Get PDF
    BackgroundNearly everything on Earth harbors a microbiome. A microbiome is a community of microbes (bacteria, fungi, and viruses) with potential to form complex networks that involve mutualistic and antagonistic interactions. Resident microbiota on/in an organism are determined by the external environment, both biotic and abiotic, and the intrinsic adaptability of each organism. Although the maize microbiome has been characterized, community changes that result from the application of fungal biocontrol strains, such as non-aflatoxigenic Aspergillus flavus, have not.MethodsWe silk channel inoculated field-grown maize separately with a non-aflatoxigenic biocontrol strain (K49), a highly toxigenic strain (Tox4), and a combination of both A. flavus strains. Two maize inbreds were treated, A. flavus-susceptible B73 and A. flavus-resistant CML322. We then assessed the impacts of A. flavus introduction on the epibiota and endobiota of their maize kernels.ResultsWe found that the native microbial communities were significantly affected, irrespective of genotype or sampled tissue. Overall, bacteriomes exhibited greater diversity of genera than mycobiomes. The abundance of certain genera was unchanged by treatment, including genera of bacteria (e.g., Enterobacter, Pantoea) and fungi (e.g., Sarocladium, Meyerozyma) that are known to be beneficial, antagonistic, or both on plant growth and health.ConclusionBeneficial microbes like Sarocladium that responded well to A. flavus biocontrol strains are expected to enhance biocontrol efficacy, while also displacing/antagonizing harmful microbes

    Altered adrenergic response in myocytes bordering a chronic myocardial infarction underlies <i>in vivo</i> triggered activity and repolarization instability

    Get PDF
    Ventricular arrhythmias are a major complication early after myocardial infarction (MI). The heterogeneous peri‐infarct zone forms a substrate for re‐entry while arrhythmia initiation is often associated with sympathetic activation. We studied the mechanisms triggering these post‐MI arrhythmias in vivo and their relation to regional myocyte remodelling. In pigs with chronic MI (6 weeks), in vivo monophasic action potentials were simultaneously recorded in the peri‐infarct and remote regions during adrenergic stimulation with isoproterenol (ISO). Sham animals served as controls. During infusion of ISO in vivo, the incidence of delayed afterdepolarizations (DADs) and beat‐to‐beat variability of repolarization (BVR) was higher in the peri‐infarct than in the remote region. Myocytes isolated from the peri‐infarct region, in comparison to myocytes from the remote region, had more DADs, associated with spontaneous Ca2+ release, and a higher incidence of spontaneous action potentials when exposed to ISO (9.99 ± 4.2 vs. 0.16 ± 0.05 APs/min, p = 0.004); these were suppressed by CaMKII inhibition. Peri‐infarct myocytes also had reduced repolarization reserve and increased BVR (26 ± 10 ms vs. 9 ± 7 ms, p 2+ handling at baseline and myocyte hypertrophy were present throughout the LV. Expression of some of the related genes was however different between the regions. In conclusion, altered myocyte adrenergic responses in the peri‐infarct, but not in the remote region, provide a source of triggered activity in vivo and of repolarization instability amplifying the substrate for re‐entry. These findings stimulate further exploration of region‐specific therapies targeting myocytes and autonomic modulation
    corecore