95 research outputs found

    Advances in the biofabrication of 3D skin in vitro : healthy and pathological models

    Get PDF
    The relevance for in vitro three-dimensional (3D) tissue culture of skin has been present for almost a century. From using skin biopsies in organ culture, to vascularized organotypic full-thickness reconstructed human skin equivalents, in vitro tissue regeneration of 3D skin has reached a golden era. However, the reconstruction of 3D skin still has room to grow and develop. The need for reproducible methodology, physiological structures and tissue architecture, and perfusable vasculature are only recently becoming a reality, though the addition of more complex structures such as glands and tactile corpuscles require advanced technologies. In this review, we will discuss the current methodology for biofabrication of 3D skin models and highlight the advantages and disadvantages of the existing systems as well as emphasize how new techniques can aid in the production of a truly physiologically relevant skin construct for preclinical innovation

    Opioid Use as a Predictor of Health Care Use and Pain Outcomes: Analysis of Clinical Trial Data

    Get PDF
    Objective . To examine effects of pre-enrollment opioid use on outcomes of a 12-month collaborative pain care management trial. We hypothesized that participants with opioid use would have worse pain at baseline; use more health care services and analgesics; and have worse pain outcomes during the trial. Design . Secondary analysis of randomized controlled trial data. Setting . Veterans Affairs (VA) primary care. Subjects . Patients age 18-65 years with chronic pain of at least moderate severity who were enrolled in a 12-month pragmatic trial of a telephone-based collaborative care intervention for chronic musculoskeletal pain. Methods . Participants were categorized as opioid users (n = 84) or non-users (n = 166) at baseline and trial randomization was stratified by opioid use. We used logistic regression to examine cross-sectional associations with baseline opioid use and mixed-effect models for repeated measures to examine baseline opioid use as a predictor of Brief Pain Inventory (BPI) scores over 12 months. Results . At baseline, 33.6% reported use of prescribed opioids. Baseline opioid users had higher baseline BPI scores and higher health-related disability than non-users. Baseline opioid users also had more outpatient visits (15.0 vs. 10.1; p = 0.001) and received more analgesics (p < 0.001) during the trial. In the final multivariable model examining effects of baseline opioid use on BPI over 12 months, opioid users and nonusers had a non-significant difference of 0.25 points (p = 0.098). In conclusion, although baseline opioid users had worse pain at baseline and used more health care during the study, response to the intervention was not significantly modified by pre-existing opioid therapy

    Advances in the Biofabrication of 3D Skin in vitro: Healthy and Pathological Models

    Get PDF
    The relevance for in vitro three-dimensional (3D) tissue culture of skin has been present for almost a century. From using skin biopsies in organ culture, to vascularized organotypic full-thickness reconstructed human skin equivalents, in vitro tissue regeneration of 3D skin has reached a golden era. However, the reconstruction of 3D skin still has room to grow and develop. The need for reproducible methodology, physiological structures and tissue architecture, and perfusable vasculature are only recently becoming a reality, though the addition of more complex structures such as glands and tactile corpuscles require advanced technologies. In this review, we will discuss the current methodology for biofabrication of 3D skin models and highlight the advantages and disadvantages of the existing systems as well as emphasize how new techniques can aid in the production of a truly physiologically relevant skin construct for preclinical innovation

    Effect of heat stress on LPS-induced febrile response in D-galactosamine-sensitized rats

    Get PDF
    . In the present study we have tested whether inhibition of protein synthesis in the liver can reduce the effect of this heat conditioning on the LPS-induced febrile response in the rat. D-galactosamine (D-gal) was used to selectively inhibit liver protein synthesis. D-gal (500 mg/kg) or PBS as control was administered intraperitoneally 1 h before heat stress. LPS (50 g/kg ip) was injected 24 h post-heat exposure. Treatment with D-gal blunted the febrile response to LPS. Moreover, heat-conditioned rats treated first with D-gal and subsequently with LPS demonstrated a profound fall in core temperature 10-18 h post-LPS. A significant increase of serum TNF-␣ accompanied this effect of D-gal on fever. Heat-conditioned animals receiving D-gal showed an inhibition in inducible HSP-70 in the liver. These data support the role of hepatic function in modulating the febrile response to LPS. heat shock proteins; liver; heart; kidney; tumor necrosis factor-␣, interleukin-6, temperature regulation; fever; lipopolysaccharide HEAT STRESS PROVOKES metabolic adaptations in the whole organism. One such response is the production of heat shock proteins (HSPs) (26). The accumulation of HSPs within cells helps both cells and the whole organism survive subsequent, otherwise lethal, thermal stress. Interestingly, heat conditioning sufficient to cause cellular HSP accumulation has also been shown to be protective in a subsequent, otherwise lethal, endotoxin challenge (30). Several studies have demonstrated that HSPs regulate cytokine production in peripheral blood monocytes. Intracellular HSP accumulation is associated with a decrease in synthesis of tumor necrosis factor-␣ (TNF-␣) and interleukin (IL)-1␤ (6, 32). Impaired HSP production causes enhanced TNF-induced cytotoxicity in cells Whereas heat conditioning is protective, pretreatment with D-galactosamine (D-gal) increases sensitivity to subsequent LPS (2, 10). D-gal inhibits protein synthesis primarily in the live

    A multi-institutional analysis of sternoclavicular joint coverage following osteomyelitis

    Get PDF
    BACKGROUND: Sternoclavicular joint (SCJ) osteomyelitis is a rare pathology requiring urgent intervention. Several operative approaches have been described with conflicting reports. Here, we present a multi-institutional study utilizing multiple surgical pathways for SCJ reconstruction. METHODS: A multi-institutional retrospective cohort study was conducted to identify patients who underwent surgical repair for sternoclavicular osteomyelitis between 2008 and 2019. Patients were stratified according to reconstruction approach: single-stage reconstruction with advancement flap and delayed-reconstruction with flap following initial debridement. Demographics, operative approach, type of reconstruction, and postoperative outcomes were analyzed. RESULTS: Thirty-two patients were identified. Mean patient age was 56.2±13.8 years and 68.8% were male. The average body mass index (BMI) was 30.0±8.8 kg/m2. The most common infection etiologies were intravenous drug use and bacteremia (both 25%). Fourteen patients (43.8%) underwent one-stage reconstruction and 18 (56.2%) underwent delayed twostaged reconstruction. Both single and delayed-stage groups had comparable rates of reinfection (7.1% vs. 11.1%, respectively), surgical site complications (21.4% vs. 27.8%), readmissions (7.1% vs. 16.6%), and reoperations (7.1% vs. 5.6%; all P\u3e0.05). The single-stage reconstruction group had a significantly lower BMI (26.2±5.7 kg/m2 vs. 32.9±9.1 kg/m2; P CONCLUSIONS: Both single and delayed-stage approaches are appropriate methods with comparable outcomes for reconstruction for SCJ osteomyelitis. When clinically indicated, a single-stage reconstruction approach may be preferable in order to avoid a second operation as associated with the delayed phase, and possibly shortening total hospital length of stay

    Transactivation of a DR-1 PPRE by a human constitutive androstane receptor variant expressed from internal protein translation start sites

    Get PDF
    Downstream in-frame start codons produce amino-terminal-truncated human constitutive androstane receptor protein isoforms (ΔNCARs). The ΔNCARs are expressed in liver and in vitro cell systems following translation from in-frame methionine AUG start codons at positions 76, 80, 125, 128, 168 and 265 within the full-length CAR mRNA. The resulting CAR proteins lack the N-terminal DNA-binding domain (DBD) of the receptor, yielding ΔNCAR variants with unique biological function. Although the ΔNCARs maintain full retinoid X receptor alpha (RXRα) heterodimerization capacity, the ΔNCARs are inactive on classical CAR-inducible direct repeat (DR)-4 elements, yet efficiently transactivate a DR-1 element derived from the endogenous PPAR-inducible acyl-CoA oxidase gene promoter. RXRα heterodimerization with CAR1, CAR76 and CAR80 isoforms is necessary for the DR-1 PPRE activation, a function that exhibits absolute dependence on both the respective RXRα DBD and CAR activation (AF)-2 domains, but not the AF-1 or AF-2 domain of RXRα, nor CAR's DBD. A new model of CAR DBD-independent transactivation is proposed, such that in the context of a DR-1 peroxisome proliferator-activated response element, only the RXRα portion of the CAR-RXRα heterodimer binds directly to DNA, with the AF-2 domain of tethered CAR mediating transcriptional activation of the receptor complex

    Quantum state preparation and macroscopic entanglement in gravitational-wave detectors

    Full text link
    Long-baseline laser-interferometer gravitational-wave detectors are operating at a factor of 10 (in amplitude) above the standard quantum limit (SQL) within a broad frequency band. Such a low classical noise budget has already allowed the creation of a controlled 2.7 kg macroscopic oscillator with an effective eigenfrequency of 150 Hz and an occupation number of 200. This result, along with the prospect for further improvements, heralds the new possibility of experimentally probing macroscopic quantum mechanics (MQM) - quantum mechanical behavior of objects in the realm of everyday experience - using gravitational-wave detectors. In this paper, we provide the mathematical foundation for the first step of a MQM experiment: the preparation of a macroscopic test mass into a nearly minimum-Heisenberg-limited Gaussian quantum state, which is possible if the interferometer's classical noise beats the SQL in a broad frequency band. Our formalism, based on Wiener filtering, allows a straightforward conversion from the classical noise budget of a laser interferometer, in terms of noise spectra, into the strategy for quantum state preparation, and the quality of the prepared state. Using this formalism, we consider how Gaussian entanglement can be built among two macroscopic test masses, and the performance of the planned Advanced LIGO interferometers in quantum-state preparation

    Upper limits on the strength of periodic gravitational waves from PSR J1939+2134

    Get PDF
    The first science run of the LIGO and GEO gravitational wave detectors presented the opportunity to test methods of searching for gravitational waves from known pulsars. Here we present new direct upper limits on the strength of waves from the pulsar PSR J1939+2134 using two independent analysis methods, one in the frequency domain using frequentist statistics and one in the time domain using Bayesian inference. Both methods show that the strain amplitude at Earth from this pulsar is less than a few times 102210^{-22}.Comment: 7 pages, 1 figure, to appear in the Proceedings of the 5th Edoardo Amaldi Conference on Gravitational Waves, Tirrenia, Pisa, Italy, 6-11 July 200

    Improving the sensitivity to gravitational-wave sources by modifying the input-output optics of advanced interferometers

    Get PDF
    We study frequency dependent (FD) input-output schemes for signal-recycling interferometers, the baseline design of Advanced LIGO and the current configuration of GEO 600. Complementary to a recent proposal by Harms et al. to use FD input squeezing and ordinary homodyne detection, we explore a scheme which uses ordinary squeezed vacuum, but FD readout. Both schemes, which are sub-optimal among all possible input-output schemes, provide a global noise suppression by the power squeeze factor, while being realizable by using detuned Fabry-Perot cavities as input/output filters. At high frequencies, the two schemes are shown to be equivalent, while at low frequencies our scheme gives better performance than that of Harms et al., and is nearly fully optimal. We then study the sensitivity improvement achievable by these schemes in Advanced LIGO era (with 30-m filter cavities and current estimates of filter-mirror losses and thermal noise), for neutron star binary inspirals, and for narrowband GW sources such as low-mass X-ray binaries and known radio pulsars. Optical losses are shown to be a major obstacle for the actual implementation of these techniques in Advanced LIGO. On time scales of third-generation interferometers, like EURO/LIGO-III (~2012), with kilometer-scale filter cavities, a signal-recycling interferometer with the FD readout scheme explored in this paper can have performances comparable to existing proposals. [abridged]Comment: Figs. 9 and 12 corrected; Appendix added for narrowband data analysi

    Searching for a Stochastic Background of Gravitational Waves with LIGO

    Get PDF
    The Laser Interferometer Gravitational-wave Observatory (LIGO) has performed the fourth science run, S4, with significantly improved interferometer sensitivities with respect to previous runs. Using data acquired during this science run, we place a limit on the amplitude of a stochastic background of gravitational waves. For a frequency independent spectrum, the new limit is ΩGW<6.5×105\Omega_{\rm GW} < 6.5 \times 10^{-5}. This is currently the most sensitive result in the frequency range 51-150 Hz, with a factor of 13 improvement over the previous LIGO result. We discuss complementarity of the new result with other constraints on a stochastic background of gravitational waves, and we investigate implications of the new result for different models of this background.Comment: 37 pages, 16 figure
    corecore