46 research outputs found

    Selective Muscle Degeneration in a Drosophila Model of Cachexia; A Role for the Transcriptional Regulator cabut

    Get PDF
    Cachexia is a systemic metabolic syndrome characterized by progressive muscle wasting. Cachectic muscle wasting presents as a comorbidity with pathological illnesses like cancer, chronic inflammation, and type 2 diabetes. The development of cachexia complicates treatment of these diseases and worsens clinical outcomes. Thus, it has become the focus of intense investigation. While many of the upstream mechanisms that propagate cachectic muscle wasting have been brought to light, little is known of the downstream mechanisms which would be more clinically relevant. Here, we have adopted a Drosophila model of cachectic muscle wasting to elucidate a novel role of the transcriptional regulator, cabut (cbt), in selective degeneration of flight muscles over jump muscles. We report that cbt impairs mitochondrial function and expends vital glycogen stores from the flight muscles. Our results contend that the resilience of the jump muscles to degeneration resides in their low oxidative output and sporadic energetic requirements. Furthermore, we have implicated cbt as a positive regulator of jump muscle fiber number during muscle development

    Antibacterial Activities of Wasabi against Escherichia coli O157:H7 and Staphylococcus aureus

    Get PDF
    Escherichia coli O157:H7 and Staphylococcus aureus are two of the major pathogens frequently involved in foodborne outbreaks. Control of these pathogens in foods is essential to food safety. It is of great interest in the use of natural antimicrobial compounds present in edible plants to control foodborne pathogens as consumers prefer more natural green foods. Allyl isothiocyanate (AITC) is an antimicrobial compound naturally present in wasabi (Japanese horseradish) and several other edible plants. Although the antibacterial effects of pure AITC and wasabi extract (essential oil) against several bacteria have been reported, the antibacterial property of natural wasabi has not been well studied. This study investigated the antibacterial activities of wasabi as well as AITC against E. coli O157:H7 and S. aureus. Chemical analysis showed that AITC is the major isothiocyanate in wasabi. The AITC concentration in the wasabi powder used in this study was 5.91±0.59 mg/g. The minimum inhibitory concentration (MIC) of wasabi against E. coli O157:H7 or S. aureus was 1% (or 10 mg/ml). Wasabi at 4% displayed higher bactericidal activity against S. aureus than against E. coli O157:H7. The MIC of AITC against either pathogen was between 10 and 100 µg/ml. AITC at 500 µg/ml was bactericidal against both pathogens while AITC at 1000 µg/ml eliminated E. coli O157:H7 much faster than S. aureus. The results from this study showed that wasabi has strong antibacterial property and has high potential to effectively control E. coli O157:H7 and S. aureus in foods. The antibacterial property along with its natural green color, unique flavor, and advantage to safeguard foods at the point of ingestion makes wasabi a promising natural edible antibacterial plant. The results from this study may be of significant interest to the food industry as they develop new and safe foods. These results may also stimulate more research to evaluate the antibacterial effect of wasabi against other foodborne pathogens and to explore other edible plants for their antimicrobial properties. To our knowledge, this is the first report on the antibacterial activity of wasabi in its natural form of consumption against E. coli O157:H7 and S. aureus

    Basal ganglia morphometry and repetitive behavior in young children with autism spectrum disorder

    Get PDF
    We investigated repetitive and stereotyped behavior (RSB) and its relationship to morphometric measures of the basal ganglia and thalami in 3-4 year old children with autism spectrum disorder (ASD; n=77) and developmental delay without autism (DD; n=34). Children were assessed through clinical evaluation and parent report using RSB-specific scales extracted from the Autism Diagnostic Observation Schedule (ADOS), the Autism Diagnostic Interview, and the Aberrant Behavior Checklist. A subset of children with ASD (n=45), DD (n=14) and a group of children with typical development (TD; n=25) were also assessed by magnetic resonance imaging (MRI). Children with ASD demonstrated elevated RSB across all measures compared to children with DD. Enlargement of the left and right striatum, more specifically the left and right putamen, and left caudate, was observed in the ASD compared to the TD group. However, nuclei were not significantly enlarged after controlling for cerebral volume. The DD group, in comparison to the ASD group, demonstrated smaller thalami and basal ganglia regions even when scaled for cerebral volume, with the exception of the left striatum, left putamen, and right putamen. Elevated RSB, as measured by the ADOS, was associated with decreased volumes in several brain regions: left thalamus, right globus pallidus, left and right putamen, right striatum and a trend for left globus pallidus and left striatum within the ASD group. These results confirm earlier reports that RSB is common early in the clinical course of ASD and, furthermore, demonstrate that such behaviors may be associated with decreased volumes of the basal ganglia and thalamus

    White Matter and Cognition in Adults Who Were Born Preterm

    Get PDF
    BACKGROUND AND PURPOSE: Individuals born very preterm (before 33 weeks of gestation, VPT) are at risk of damage to developing white matter, which may affect later cognition and behaviour. METHODS: We used diffusion tensor MRI (DT-MRI) to assess white matter microstructure (fractional anisotropy; FA) in 80 VPT and 41 term-born individuals (mean age 19.1 years, range 17-22, and 18.5 years, range 17-22 years, respectively). VPT individuals were part of a 1982-1984 birth cohort which had been followed up since birth; term individuals were recruited by local press advertisement. General intellectual function, executive function and memory were assessed. RESULTS: The VPT group had reduced FA in four clusters, and increased FA in four clusters relative to the Term group, involving several association tracts of both hemispheres. Clusters of increased FA were associated with more severe neonatal brain injury in the VPT group. Clusters of reduced FA were associated with lower birth weight and perinatal hypoxia, and with reduced adult cognitive performance in the VPT group only. CONCLUSIONS: Alterations of white matter microstructure persist into adulthood in VPT individuals and are associated with cognitive function
    corecore