3,664 research outputs found

    Enrichment of schizophrenia heritability in both neuronal and glia cell regulatory elements

    Get PDF
    Genome-wide association studies have identified over 100 robust risk loci for schizophrenia with thousands of variants mediating genetic heritability, the majority of which reside in non-coding regions. Analytical approaches have shown this heritability is strongly enriched at variants within regulatory elements identified from human post-mortem brain tissue. However, bulk post-mortem brain tissue has a heterogeneous cell composition, making biological interpretations difficult. We sought to refine the cell types mediating schizophrenia heritability by separating neuronal and glial signals using data from: (1) NeuN-sorted post-mortem brain and (2) cell culture systems. Schizophrenia heritability was partitioned using linkage disequilbrium (LD) score regression. Variants within genomic regions marked by H3K4me3 (marker of active promoters) from NeuN-positive (neuronal) and NeuN-negative (non-neuronal) cells explained a significant amount of schizophrenia heritability (P = 1.38 × 10−10 and P = 7.97 × 10−10). However, variants located in H3K4me3 sites specific to NeuN-positive (neuronal) cells were enriched (P = 3.13 × 10−4), while those specific to NeuN-negative (non-neuronal) cells were not (P = 0.470). Data from cell culture systems mimicked this pattern of association. We show the previously observed enrichment of heritability from variants at brain H3K4me3 sites is mediated by both neuronal and non-neuronal brain cell types. However, only neuronal cell populations showed a unique contribution driven by cell-type specific regulatory elements. Cell culture systems recapitulate disease relevant gene-regulatory landscapes, validating them as a tool for future investigation of genetic mechanisms underlying schizophrenia. Identifying the cell types in which risk variants operate will greatly increase our understanding of schizophrenia pathobiology and aid in the development of novel model systems and therapies

    Genetic risk for Alzheimer's disease is concentrated in specific macrophage and microglial transcriptional networks

    Get PDF
    Background: Genome-wide association studies of Alzheimer’s disease (AD) have identified a number of significant risk loci, the majority of which lie in non-coding regions of the genome. The lack of causal alleles and considerable polygenicity remains a significant barrier to translation into mechanistic understanding. This includes identifying causal variants and the cell/tissue types in which they operate. A fuller understanding of the cell types and transcriptional networks involved in AD genetic risk mechanisms will provide important insights into pathogenesis. Methods: We assessed the significance of the overlap between genome-wide significant AD risk variants and sites of open chromatin from data sets representing diverse tissue types. We then focussed on macrophages and microglia to investigate the role of open chromatin sites containing motifs for specific transcription factors. Partitioned heritability using LDscore regression was used to investigate the contribution of specific macrophage and microglia transcription factor motif-containing open chromatin sites to the heritability of AD. Results: AD risk single nucleotide polymorphisms (SNPs) are preferentially located at sites of open chromatin in immune cells, particularly monocytes (z score = 4.43; corrected P = 5.88 × 10− 3). Similar enrichments are observed for macrophages (z score = 4.10; corrected P < 2.40 × 10− 3) and microglia (z score = 4.34, corrected P = 0.011). In both macrophages and microglia, AD risk variants are enriched at a subset of open chromatin sites that contain DNA binding motifs for specific transcription factors, e.g. SPI1 and MEF2. Genetic variation at many of these motif-containing sites also mediate a substantial proportion of AD heritability, with SPI1-containing sites capturing the majority of the common variant SNP-chip heritability (microglia enrichment = 16.28, corrected enrichment P = 0.0044). Conclusions: AD risk alleles plausibly operate in immune cells, including microglia, and are concentrated in specific transcriptional networks. Combined with primary genetic association results, the SPI1 and MEF2 transcriptional networks appear central to AD risk mechanisms. Investigation of transcription factors targeting AD risk SNP associated regulatory elements could provide powerful insights into the molecular processes affected by AD polygenic risk. More broadly, our findings support a model of polygenic disease risk that arises from variants located in specific transcriptional networks

    Layered Model for Radiation-Induced Chemical Evolution of Icy Surface Composition on Kuiper Belt and Oort Cloud Bodies

    Get PDF
    The diversity of albedos and surface colors on observed Kuiper Belt and Inner Oort Cloud objects remains to be explained in terms of competition between primordial intrinsic versus exogenic drivers of surface and near-surface evolution. Earlier models have attempted without success to attribute this diversity to the relations between surface radiolysis from cosmic ray irradiation and gardening by meteoritic impacts. A more flexible approach considers the different depth-dependent radiation profiles produced by low-energy plasma, suprathermal, and maximally penetrating charged particles of the heliospheric and local interstellar radiation environments. Generally red objects of the dynamically cold (low inclination, circular orbit) Classical Kuiper Belt might be accounted for from erosive effects of plasma ions and reddening effects of high energy cosmic ray ions, while suprathermal keV-MeV ions could alternatively produce more color neutral surfaces. The deepest layer of more pristine ice can be brought to the surface from meter to kilometer depths by larger impact events and potentially by cryovolcanic activity. The bright surfaces of some larger objects, e.g. Eris, suggest ongoing resurfacing activity. Interactions of surface irradiation, resultant chemical oxidation, and near-surface cryogenic fluid reservoirs have been proposed to account for Enceladus cryovolcanism and may have further applications to other icy irradiated bodies. The diversity of causative processes must be understood to account for observationally apparent diversities of the object surfaces

    Effect of ovariectomy on the progression of chronic kidney disease-mineral bone disorder (CKD-MBD) in female Cy/+ rats

    Get PDF
    Male Cy/+ rats have shown a relatively consistent pattern of progressive kidney disease development that displays multiple key features of late stage chronic kidney disease-mineral bone disorder (CKD-MBD), specifically the development of cortical bone porosity. However, progression of disease in female Cy/+ rats, assessed in limited studies, is more heterogeneous and to date has failed to show development of the CKD-MBD phenotype, thus limiting their use as a practical model of progressive CKD-MBD. Animal and human studies suggest that estrogen may be protective against kidney disease in addition to its established protective effect on bone. Therefore, in this study, we aimed to determine the effect of ovariectomy (OVX) on the biochemical and skeletal manifestations of CKD-MBD in Cy/+ female rats. We hypothesized that OVX would accelerate development of the biochemical and skeletal features of CKD-MBD in female Cy/+ rats, similar to those seen in male Cy/+ rats. Female Cy/+ rats underwent OVX (n = 8) or Sham (n = 8) surgery at 15 weeks of age. Blood was collected every 5 weeks post-surgery until 35 weeks of age, when the rats underwent a 4-day metabolic balance, and the tibia and final blood were collected at the time of sacrifice. OVX produced the expected changes in trabecular and cortical parameters consistent with post-menopausal disease, and negative phosphorus balance compared with Sham. However, indicators of CKD-MBD were similar between OVX and Sham (similar kidney weight, plasma blood urea nitrogen, creatinine, creatinine clearance, phosphorus, calcium, parathyroid hormone, and no cortical porosity). Contrary to our hypothesis, OVX did not produce evidence of development of the CKD-MBD phenotype in female Cy/+ rats

    Functionality of promoter microsatellites of arginine vasopressin receptor 1A (AVPR1A): implications for autism

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Arginine vasopressin (AVP) has been hypothesized to play a role in aetiology of autism based on a demonstrated involvement in the regulation of social behaviours. The arginine vasopressin receptor 1A gene (<it>AVPR1A</it>) is widely expressed in the brain and is considered to be a key receptor for regulation of social behaviour. Moreover, genetic variation at <it>AVPR1A </it>has been reported to be associated with autism. Evidence from non-human mammals implicates variation in the 5'-flanking region of <it>AVPR1A </it>in variable gene expression and social behaviour.</p> <p>Methods</p> <p>We examined four tagging single nucleotide polymorphisms (SNPs) (rs3803107, rs1042615, rs3741865, rs11174815) and three microsatellites (RS3, RS1 and AVR) at the <it>AVPR1A </it>gene for association in an autism cohort from Ireland. Two 5'-flanking region polymorphisms in the human <it>AVPR1A</it>, RS3 and RS1, were also tested for their effect on relative promoter activity.</p> <p>Results</p> <p>The short alleles of RS1 and the SNP rs11174815 show weak association with autism in the Irish population (<it>P </it>= 0.036 and <it>P </it>= 0.008, respectively). Both RS1 and RS3 showed differences in relative promoter activity by length. Shorter repeat alleles of RS1 and RS3 decreased relative promoter activity in the human neuroblastoma cell line SH-SY5Y.</p> <p>Conclusions</p> <p>These aligning results can be interpreted as a functional route for this association, namely that shorter alleles of RS1 lead to decreased <it>AVPR1A </it>transcription, which may proffer increased susceptibility to the autism phenotype.</p

    Heliosheath Space Environment Interactions with Icy Bodies in the Outermost Solar System

    Get PDF
    The Voyager 1 and 2 spacecraft are exploring the space environment of the outermost solar system at the same time that earth-based astronomy continues to discover new icy bodies, one larger than Pluto, in the transitional region outward from the Classical Kuiper Belt to the Inner Oort Cloud. Some of the Scattered Disk Objects in this region periodically pass through the heliosheath, entered by Voyager 1 in Dec. 2004 and later expected to be reached by Voyager 2, and out even beyond the heliopause into the Very Local Interstellar Medium. The less energetic heliosheath ions, important for implantation and sputtering processes, are abundant near and beyond the termination shock inner boundary, but the source region of the more penetrating anomalous cosmic ray component has not yet been found. Advantageous for modeling of icy body interactions, the measured heliosheath flux spectra are relatively more stable within this new regime of isotropic compressional magnetic turbulence than in the upstream heliospheric environment. The deepest interactions and resultant radiation-induced chemistry arise from the inwardly diffusing component of the galactic cosmic ray ions with significant intensity modulation also arising in the heliosheath beyond Voyager 1. Surface gardening by high-velocity impacts of smaller bodies (e.g., fragments of previous KBO collisions) and dust is a further space weathering process setting the time scales for long term exposure of different regolith layers to the ion irradiation. Sputtering and ionization of impact ejecta grains may provide a substantial feedback of pickup ions for multiple cycles of heliosheath acceleration and icy body interaction. Thus the space weathering interactions are potentially of interest not only for effects on sensible surface composition of the icy bodies but also for evolution of the heliosheath plasma energetic ion, and neutral emission environment
    corecore