
1Scientific RepoRts |          (2019) 9:7936  | https://doi.org/10.1038/s41598-019-44415-9

www.nature.com/scientificreports

Effect of ovariectomy on the 
progression of chronic kidney 
disease-mineral bone disorder 
(CKD-MBD) in female Cy/+ rats
Colby J. Vorland  1, Pamela J. Lachcik1, Elizabeth A. Swallow2, Corinne E. Metzger2, 
Matthew R. Allen2,3,4, Neal X. Chen3, Sharon M. Moe2,3,4 & Kathleen M. Hill Gallant1,3

Male Cy/+ rats have shown a relatively consistent pattern of progressive kidney disease development 
that displays multiple key features of late stage chronic kidney disease-mineral bone disorder (CKD-
MBD), specifically the development of cortical bone porosity. However, progression of disease in 
female Cy/+ rats, assessed in limited studies, is more heterogeneous and to date has failed to show 
development of the CKD-MBD phenotype, thus limiting their use as a practical model of progressive 
CKD-MBD. Animal and human studies suggest that estrogen may be protective against kidney disease 
in addition to its established protective effect on bone. Therefore, in this study, we aimed to determine 
the effect of ovariectomy (OVX) on the biochemical and skeletal manifestations of CKD-MBD in Cy/+ 
female rats. We hypothesized that OVX would accelerate development of the biochemical and skeletal 
features of CKD-MBD in female Cy/+ rats, similar to those seen in male Cy/+ rats. Female Cy/+ rats 
underwent OVX (n = 8) or Sham (n = 8) surgery at 15 weeks of age. Blood was collected every 5 weeks 
post-surgery until 35 weeks of age, when the rats underwent a 4-day metabolic balance, and the tibia 
and final blood were collected at the time of sacrifice. OVX produced the expected changes in trabecular 
and cortical parameters consistent with post-menopausal disease, and negative phosphorus balance 
compared with Sham. However, indicators of CKD-MBD were similar between OVX and Sham (similar 
kidney weight, plasma blood urea nitrogen, creatinine, creatinine clearance, phosphorus, calcium, 
parathyroid hormone, and no cortical porosity). Contrary to our hypothesis, OVX did not produce 
evidence of development of the CKD-MBD phenotype in female Cy/+ rats.

Chronic kidney disease (CKD) affects approximately 13.4% of adults worldwide1, and prevalence and progression 
of the disease differ based on biological sex. Estimation of the global prevalence of CKD is higher in women than 
men1, but a large cohort study showed a higher proportion of males than females at end stage kidney disease2. A 
meta-analysis of 68 studies on nondiabetic kidney disease concluded that kidney function declines more slowly 
in women than men3. Population studies show that end-stage kidney disease incidence is higher in men than 
premenopausal women, but sex differences begin to lessen around menopausal years4. In concordance, ovariec-
tomy (OVX) has been demonstrated to accelerate kidney disease in various animal models5–10, while exogenous 
estradiol administration attenuates the disease6–13. Similarly, in premenopausal women, bilateral oophorectomy 
at age ≤45 years was associated with an elevated risk of CKD as assessed by estimated glomerular filtration rate14. 
However, a meta-analysis of hormone replacement studies in postmenopausal women found no significant effect 
on albuminuria or proteinuria when assessed together but in a subgroup analysis of studies assessing only albu-
minuria there was a small favorable effect of hormone replacement in lowering albuminuria15. Further, some 
divergent studies have found no effect16,17 or even a protective effect18,19 of estrogen loss on kidney disease pro-
gression. In addition to the impact on kidney disease progression, estrogen has well-established protective effects 

1Department of Nutrition Science, Purdue University, West Lafayette, IN, 47907, USA. 2Department of Anatomy 
and Cell Biology, Indiana University School of Medicine, Indianapolis, 46202, IN, USA. 3Division of nephrology, 
Department of Medicine, Indiana University School of Medicine, Indianapolis, 46202, IN, USA. 4Roudebush Veterans 
Affairs Medical Center, Indianapolis, IN, 46202, USA. Correspondence and requests for materials should be addressed 
to K.M.H. (email: hillgallant@purdue.edu)

Received: 7 January 2019

Accepted: 16 May 2019

Published: xx xx xxxx

OPEN

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IUPUIScholarWorks

https://core.ac.uk/display/227054397?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1038/s41598-019-44415-9
http://orcid.org/0000-0003-4225-372X
mailto:hillgallant@purdue.edu


2Scientific RepoRts |          (2019) 9:7936  | https://doi.org/10.1038/s41598-019-44415-9

www.nature.com/scientificreportswww.nature.com/scientificreports/

on bone20. This is highly relevant as a common co-morbidity of CKD is mineral bone disorder (CKD-MBD). 
CKD-MBD is characterized by biochemical abnormalities of mineral metabolism, bone disease, and vascular or 
other soft tissue calcification that result in an increased risk for cardiovascular events, bone fractures, and death21. 
Estrogen may modulate the main biochemical indicators of CKD-MBD, fibroblast growth factor-23 (FGF-23), 
parathyroid hormone (PTH), and 1,25-dihydroxyvitamin D (1,25D), either directly or indirectly22. Thus, estro-
gen appears to be protective against kidney failure and associated co-morbid conditions. However, biological sex 
differences in the manifestation and progression of CKD-MBD through the stages of CKD are understudied.

The Cy/+ rat model of CKD is unique in that it has been characterized as a spontaneous slowly progressive 
model of CKD that exhibits all the key features of CKD-MBD and can be studied at earlier to later stages of dis-
ease progression23,24. The phenotype is the result of a missense mutation in Anks6 that encodes for SamCystin, and 
results in renal cyst formation25. Male Cy/+ rats experience a clear elevation in blood urea nitrogen (BUN) by 10 
weeks of age23 and show all features of late stage CKD-MBD by 35 to 38 weeks of age, including changes in addi-
tional plasma biochemistries such as creatinine, hematocrit, phosphorus and calcium, regulatory hormones PTH 
and FGF23, bone abnormalities (particularly cortical porosity), and vascular calcification24,26,27. On the contrary, 
female Cy/+ rats do not experience an elevation in BUN until around 40–44 weeks of age and even then are not 
comparable to levels in 10-week-old males28,29. This has resulted in minimal use of female Cy/+ rats in studies on 
CKD-MBD. Therefore, the aim of this study was to determine the effect of OVX on the biochemical and skeletal 
manifestations of CKD-MBD in Cy/+ female rats. We hypothesized that OVX would accelerate development of 
the biochemical and skeletal features of CKD-MBD in female Cy/+ rats, similar to those seen in male Cy/+ rats, 
by 35 weeks of age. Because most women with CKD are postmenopausal or amenorrhoeic due to the disease30, 
this model would be translationally relevant to a large percentage of women with CKD who have concurrent 
postmenopausal osteoporosis.

Materials and Methods
Animals. Sixteen female Cy/+ rats were studied from the Cy rat colony maintained at Purdue University, 
which was rederived from the Indiana University School of Medicine colony maintained by Dr. Sharon Moe. 
Heterozygosity for the Anks6 mutation was determined by ear punch and genotyping (Transnetyx, Memphis, 
TN). Rats were randomly assigned to shoe-box cages (2 rats per cage), and within each cage, randomly assigned 
to undergo OVX (N = 8) or Sham (N = 8) surgery at 15 weeks of age (described below). Blood was drawn at 10, 
20, 25, 30, and 35 weeks of age through the jugular vein after rats were anesthetized with isoflurane. Rats were fed 
standard rat chow containing 0.7% phosphorus and 1.0% Ca (Envigo Teklad 2018, Madison, WI) and water ad 
libitum until 24 weeks of age, at which time they were switched to an ad libitum casein-based diet (0.7% phospho-
rus and 0.7% calcium) which we have previously shown to lead to more consistent and accelerated kidney decline 
in Cy/+ males (TD.04539, Envigo Teklad, Madison, WI)24. Rats were fed this diet until sacrifice at 35 weeks of 
age. At 13 days prior to sacrifice, rats were transferred to wire-bottom metabolic cages and a four-day phospho-
rus and calcium balance was performed from 9 to 5 days prior to sacrifice. Five days prior to sacrifice, rats were 
transferred back to shoe-box cages. Body weights were taken weekly. The light-dark cycle was maintained from 
6:30AM-6:30PM. Room temperature was held at ~21 °C and humidity ~27%. Experiments were performed in 
accordance with relevant guidelines and regulations, and this protocol was approved by the Purdue University 
Animal Care and Use Committee (protocol #1702001543).

OVX and sham procedures. All appropriate steps were taken for performing aseptic surgery for 
OVX and Sham procedures. OVX procedures followed similarly to those described in the Harlan protocol 
(HUS-QREC-PRD-932, Issue 1, Revision 03). Briefly, rats were shaved on the dorsal midline where one incision 
of ~2 cm was made. The incision was pulled to the left side and a small ~10 mm incision was made through the 
abdominal wall. The ovary was externalized, and a silk ligature was tied between the end of the uterine horn and 
the ovary and ovarian artery. The ovary was excised and removed. The abdominal wall was closed with an absorb-
able suture and then the skin was pulled to the opposite side to remove the other ovary by the same method. 
Sham-operated rats underwent the same surgical procedure, excluding the ligation and removal of the ovaries.

Tissue collection. At sacrifice, rats were anesthetized with isoflurane, the thoracic cavity was opened, and 
blood was collected from the vena cava resulting in death by exsanguination. Kidneys and uteri were excised and 
weighed. The left tibia was excised, cleaned of surrounding soft-tissue, and stored in 10% neutral buffered forma-
lin for 3 days, then transfer to 70% ethanol and stored at −20 °C until the time of microcomputed tomography 
(µCT) analysis31.

Phosphorus and calcium balance and percent net absorption. Over the four days of metabolic bal-
ance, all urine and feces were collected, and diet was weighed daily to assess 4-day average phosphorus and cal-
cium balance and net absorption. Feces and diet were ashed in a muffle furnace (Thermolyne Sybron Type 30400, 
Dubuque, IA) for 10 days at 600 °C. Feces were then diluted 1400X and diet 60X with 2% nitric acid. Urine was 
diluted 11X with 2% nitric acid. Phosphorus and calcium in urine, feces, and diet were quantified by inductively 
coupled plasma-optical emission spectrophotometry (ICP-OES; Optima 4300DV, Perkin Elmer, Shelton, CT). 
Urine creatinine was determined by colorimetric method (QuantiChrom Creatinine Assay Kit; BioAssay Systems, 
Hayward, CA). Four-day phosphorus balance was calculated as dietary phosphorus intake (mg/d) minus urine 
and fecal phosphorus excretion (mg/d), and percent net phosphorus absorption as phosphorus intake (mg/d) 
minus fecal excretion (mg/d)/phosphorus intake (mg/d). Calcium balance and percent net calcium absorption 
were calculated similarly.
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Plasma biochemistries. Plasma stored at −80C was thawed and analyzed for mineral biochemistries. 
Phosphorus, calcium, BUN, and creatinine were measured by colorimetric assay (Phosphorus Kit: Pointe 
Scientific Inc., Canton, MI; Calcium Kit: Pointe Scientific Inc., Canton, MI; BUN: QuantiChrom Urea Assay Kit, 
BioAssay Systems, Hayward, CA; Creatinine: QuantiChrom Creatinine Assay Kit; BioAssay Systems, Hayward, 
CA). Estradiol and intact PTH (iPTH) were measured by enzyme-linked immunosorbent assay (Calbiotech Inc., 
El Cajon, CA; Alpco, Salem, NH, respectively).

Microcomputed tomography. Proximal tibiae were analyzed by µCT (Skyscan 1172, 12 µm resolution) 
using protocols similar to our previous studies27. Trabecular microarchitecture was obtained from a 1 mm region 
of interest selected approximately 1 mm distal to the tibial growth plate. Bone parameters assessed included tra-
becular bone volume/tissue volume (BV/TV, %), trabecular thickness (Tb.Th), trabecular number (Tb.N), and 
trabecular separation (Tb.Sp). Cortical bone analysis was performed on a single slice located 1.5 mm distal from 
the metaphysis region of analysis with outcome parameters including cortical bone area (Ct.Ar), cortical thick-
ness (Ct.Th), and cortical porosity.

Statistics. Group differences for plasma biochemistries with multiple timepoints (calcium, phosphate, cre-
atinine, BUN, and estradiol) were compared with a linear mixed model with rat ID as a random effect, with post 
hoc pairwise comparisons. Unpaired, two-tailed t-tests were performed for comparison of group differences in 
endpoint iPTH, uterine and kidney weights, mineral balance and net absorption, and bone outcomes between 
OVX and Sham. Estradiol measures were log-transformed because they were not normally distributed, and the 
reported p values reflect statistical comparisons of the transformed values. Because of unequal variances for uter-
ine weight and all bone outcomes, the Satterthwaite test was used to test for differences. Because two rats were 
housed per cage, all statistical comparisons were repeated with a linear mixed model with cage ID as a random 
effect. The cage effect was small and did not alter conclusions with the exception of BUN, for which results are 
reported as the model including cage as a random effect. All other results were reported without cage ID as a 
random effect. Statistical significance was set at α < 0.05. All statistical tests included all n = 16 rats. Statistical 
Analysis Software version 9.4 (SAS Institute, Cary, NC) was used for all statistical analyses. Results are reported 
as mean ± SEM.

Results
OVX was deemed successful as evidenced by the lower estradiol at 35 weeks (1.5 ± 0.1 pg/mL vs 6.5 ± 2.4 pg/
mL, p = 0.06 for group*time interaction, p = 0.01 for 35 week pairwise comparison between OVX and Sham, 
Table 1), as well as significantly lower uterine weight observed at 35 weeks (0.16 ± 0.01 g vs 0.78 ± 0.06 g, respec-
tively; p < 0.0001), and greater increase in body weight after OVX compared with Sham (p < 0.0001, Fig. 1). 
Plasma creatinine (p = 0.40), phosphorus (p = 0.58), and calcium (p = 0.38) were not different between OVX 
and Sham groups. BUN was statistically higher in OVX compared with Sham, but with only a small difference 
in means at 35 weeks (18.5 ± 0.6 mg/dL vs 16.3 ± 0.8 mg/dL, p = 0.04) (Fig. 2), which has low practical relevance 
when compared to the values of ~60–107 mg/dL observed in our previous studies in Cy/+ male rats of similar 
age24,32. Creatinine clearance was not different between groups (4.2 ± 0.2 mL/min vs 4.1 ± 0.2 mL/min for OVX 

OVX (n = 8) Sham (n = 8) P

Baseline estradiol (pg/mL) 4.0 ± 0.6 4.1 ± 1.1 0.99

35 week estradiol (pg/mL) 1.5* ± 0.1 6.5 ± 2.4 0.01

Table 1. Estradiol at baseline (10 weeks, pre-surgery) and 35 weeks. Values are mean ± SEM. *Less than the 
analytic sensitivity of 3 pg/mL.

Figure 1. OVX resulted in higher body mass relative to Sham. Values presented are mean ± SEM. ***p < 0.0001 
between groups.
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and Sham respectively, p = 0.83). In addition, kidney weight was not different between groups (1.417 ± 0.075 g vs 
1.382 ± 0.050 g, p = 0.70).

Phosphorus balance was lower in OVX rats compared to Sham (−2.8 ± 2.6 mg/day vs 5.4 ± 2.5 mg/day, 
p = 0.04), while calcium balance was also numerically lower but did not reach statistical significance (0.6 ± 2.9 mg/
day vs 7.1 ± 2.8 mg/day, p = 0.12) (Fig. 3). Similarly, both percent net phosphorus and calcium absorption were 
numerically lower in OVX rats vs Sham, but neither reached statistical significance (43 ± 2% vs 48 ± 2%, p = 0.08; 
5 ± 4% vs 12 ± 3%, p = 0.12, phosphorus and calcium, respectively) (Fig. 3).

In the tibia, BV/TV and Tb.N were lower in OVX rats (p < 0.0001 for both), and Tb.Sp, Ct.Ar, and Ct.Th 
higher (p < 0.0001) compared with Sham (Table 2). Tb.Th was not different between groups (p = 0.17) (Table 2). 
No cortical porosity was noted for any rats (Sham nor OVX) (Fig. 4). Accordingly, no difference in iPTH at 35 
weeks between groups was observed (138.7 ± 13.2 pg/mL vs 141.8 ± 20.1 pg/mL for OVX vs Sham, p = 0.90).

Discussion
OVX of Cy/+ female rats produced the changes expected with OVX consistent with the postmenopausal con-
dition that included higher body weight, lower uterine weight, and lower trabecular bone volume compared to 
Sham rats33,34. However, there was no indication that OVX advanced the CKD-MBD phenotype as evidenced 
by similar creatinine clearance, plasma creatinine, BUN, kidney weight, phosphorus, and calcium compared 
with Sham. And, although OVX produced expected changes in cancellous bone and cortical area and thickness, 
the increased cortical porosity that is the hallmark of the CKD-MBD phenotype in male Cy/+ rats32 was not 
observed in any rats. These findings were contrary to our hypothesis that OVX would promote the development 
of CKD-MBD in female Cy/+ rats to an extent where they could be a practical female model of CKD-MBD.

Sex differences in the progression of kidney disease have been observed in both rodents and humans, with 
some conflicting results. Some studies have shown an increase in disease progression in response to OVX. 
This has been demonstrated in sclerosis-prone ROP Os/+ mice5, 5/6 nephrectomized Wistar rats6, in rats with 
streptozotocin-induced diabetic nephropathy7, Dahl salt-sensitive rats8, and in female Imai rats that develop 
spontaneous hypercholesterolemia10. Further, administration of estradiol tended to mitigate the changes6–8. In 

Figure 2. Plasma biochemistries over time between OVX and Sham surgery. Plasma creatinine, phosphate, 
and calcium were not different between the groups. BUN was statistically higher in the OVX group. Values 
presented are mean ± SEM. For comparison reference range for Cy/+ male rats at 34–35 weeks based on Moe 
et al. in24,32: BUN (~60–107 mg/dL), phosphate (~6.8–11.6 mg/dL), calcium (~8.5–9.8 mg/dL). We have also 
measured plasma creatinine at 0.92 ± 0.06 mg/dL in 30 week Cy/+ males (unpublished).
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Figure 3. Mineral balance and net mineral absorption at 35 weeks by OVX or Sham surgery. (a) Phosphorus 
balance was lower in OVX rats vs Sham. (b) Calcium balance was not different between the groups. (c) Percent 
net phosphorus absorption and (d) percent net calcium absorption were not different between groups. Values 
presented are mean ± SE. *p = 0.04.

OVX (n = 8) Sham (n = 8) P

BV/TV (%) 0.99 ± 0.34 17.45 ± 1.59 <0.0001

Tb.N (1/mm−1) 0.14 ± 0.04 2.16 ± 0.13 <0.0001

Tb.Th (mm) 0.07 ± 0.008 0.08 ± 0.003 0.17

Tb.Sp (mm) 0.84 ± 0.02 0.27 ± 0.01 <0.0001

Ct.Ar (mm2) 5.93 ± 0.07 5.22 ± 0.07 <0.0001

Ct.Th (mm) 0.48 ± 0.004 0.39 ± 0.005 <0.0001

Table 2. Microstructural parameters of cancellous and cortical bone of the tibia measured by micro-CT. Values 
are mean ± SE. BV/TV (bone volume (BV)/Tissue volume (TV)); Tb.N (trabecular number); Tb.Th (trabecular 
thickness); Tb.Sp (trabecular separation); Ct.Ar (cortical bone area); Ct.Th (cortical thickness).

Figure 4. Micro-CT images of the proximal tibia. Representative crosssectional micro-CT images of the 
proximal tibia. From left to right: female Cy/+ Sham rats, female Cy/+ OVX rats (present study, Table 2), and 
for visual comparison, a representative image from a 35-week-old male Cy/+ rat showing prominent cortical 
porosity (unpublished) that is absent from both Sham and OVX female Cy/+ rats in the present study.
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female Imai rats, a protective or aggravative effect of estradiol on glomerulosclerosis was dependent on dose10 
which may be mediated by growth hormone35. Additionally, exogenous estradiol in spontaneously hyperten-
sive rats that underwent uninephrectomy, or in female db/db mice, male Imai rats, or male Sprague-Dawley 
rats has been demonstrated to reduce age-related kidney disease progression9,11–13. The estradiol metabolite 
2-hydroxyestradiol has also been shown to be renoprotective in puromycin-aminonucleoside model of nephrop-
athy36. Protective effects of estrogen on renal function have been suggested to be mediated by a reduction in 
extracellular matrix protein accumulation37,38.

In contrast to the above-mentioned studies, OVX did not worsen kidney disease in female Munich-Wistar 
rats that progressively develop glomerular injury with age nor 5/6 nephrectomized Wistar rats16,17. Further, 
some studies have even shown apparent benefits of OVX to renal outcomes: OVX in spontaneous hypertensive 
stroke-prone female rats increased survival and reduced renal vascular pathology compared to Sham surgery, 
which was reversed with estradiol administration18. Similarly, in context of hyperlipidemia in both analbumine-
mic and Zucker rats, OVX was protective against glomerulosclerosis, while exogenous estradiol worsened it19,39.

Previous studies in the Cy/+ rat have demonstrated that females do not develop the pronounced azotemia and 
fibrosis from cystic disease until much older ages compared with males28,29. A previous study of OVX was con-
ducted in weanling Cy/+ female rats by Cowley et al.40. These rats underwent OVX at 4 weeks of age and did not 
exhibit subsequent changes in kidney weight, volume density of renal cysts, or BUN by 10 weeks of age compared 
to Sham rats. However, testosterone administration induced cystic disease progression40. Our findings confirm 
that this lack of effect of OVX on kidney disease progression is not limited to growing rats in the Cy/+ model of 
CKD. However, at odds with our results and those of Cowley et al. is a study by Stringer et al.41 in which Cy/+ 
rats underwent OVX at 6 weeks of age, and kidney function was evaluated at 12 weeks of age. These investigators 
observed that OVX of female rats hastened the progression of polycystic kidney disease, and likewise, orchidec-
tomy in male Cy/+ rats slowed disease progression. The stark difference in ages studied, and particularly age of 
OVX, makes comparisons among these studies challenging. Our study models more closely a postmenopausal 
loss of ovarian function versus these prior studies in growing Cy/+ rats that model a deprivation of ovarian func-
tion through growth and development. Additionally, our study did not aim to evaluate the cystic kidney disease 
phenotype in detail, so further studies are needed to determine the mechanistic effects of OVX in adult Cy/+ rats 
on renal function outcomes.

Interestingly, in our study, OVX rats had lower, but not statistically significant, percent net phosphorus absorp-
tion that may suggest that estrogen influences intestinal phosphate transporters. Intestinal tissue is not available 
from the present study to directly test this mechanistic hypothesis, but there is some prior experimental evidence 
to support this notion. Acute 17ß-estradiol injection at 2 mg/kg body weight in rats increased intestinal brush 
boarder membrane vesicle uptake and the mRNA and protein expression of the main known intestinal phosphate 
transporter, sodium phosphate cotransporter 2b42. However, in contrast, a study in female rats of similar age to 
those in our study found no change in net phosphorus absorption with injection of 5 or 40 ug/kg 17ß-estradiol 
for 21 days43. Further research on the effects of ovariectomy and estrogen on phosphorus absorption are needed. 
OVX also resulted in a non-significant trend towards lower whole-body phosphorus and calcium balance. In a 
separate study of Cy/+ and WT male rats, we found that phosphorus and calcium balance are also marginally 
lower in Cy/+ males with CKD compared to normal WT controls44. The lower phosphorus and calcium balance 
in the present study is likely reflective of the loss of bone mass in the OVX rats compared with Sham.

This study has several limitations. First, this study was designed as a feasibility study to determine if OVX of 
Cy/+ females would produce the biochemical and bone phenotypic features of CKD-MBD that are observed in 
male Cy/+ rats of similar age. Thus, only two groups of heterozygous Cy/+ females, with OVX or Sham control, 
were studied, and we relied on historical data in male Cy/+ rats for qualitative comparisons between the sexes. 
Additionally, because of the study aim of establishing a practical female model of CKD-MBD, our study did not 
include more detailed assessments of kidney function, such as direct GFR by inulin clearance, urinary protein 
excretion, or renal histology including cystic lesions and interstitial fibrosis. These in-depth assessments would 
be needed to draw more substantial conclusions on the mechanistic effects of estrogen deficiency on renal func-
tion in this rat model but are not available from the present study. A future study aimed at determining effects of 
estrogen on kidney function in this model would also ideally include an OVX plus exogenous estrogen treatment 
group. Further explorations of sex differences and effects of gonadal hormones on kidney disease progression and 
features of the CKD-MBD phenotype would ideally have groups of both males and females with orchidectomy or 
OVX, respectively, and possibly hormonal repletion treatments. However, since we observed no overt effects of 
OVX on the biochemical or bone phenotype in this model, such future studies might be better conducted in other 
CKD models, such as the 5/6th nephrectomy model.

In summary, OVX did not produce alterations consistent with the CKD-MBD phenotype as observed in our 
previous work in Cy/+ males as we had hypothesized. Our findings suggest that the OVX Cy/+ rat is not a prac-
tical female model for studying postmenopausal CKD-MBD. Development and validation of other female rodent 
models of CKD-MBD are needed.

Data Availability
Individual data generated or analyzed during this study are included in the Supplementary Information file (Sup-
plementary Data.xlsx).

References
 1. Hill, N. R. et al. Global Prevalence of Chronic Kidney Disease - A Systematic Review and Meta-Analysis. PLoS One 11, e0158765, 

https://doi.org/10.1371/journal.pone.0158765 (2016).
 2. Iseki, K., Iseki, C., Ikemiya, Y. & Fukiyama, K. Risk of developing end-stage renal disease in a cohort of mass screening. Kidney Int 

49, 800–805 (1996).

https://doi.org/10.1038/s41598-019-44415-9
https://doi.org/10.1371/journal.pone.0158765


7Scientific RepoRts |          (2019) 9:7936  | https://doi.org/10.1038/s41598-019-44415-9

www.nature.com/scientificreportswww.nature.com/scientificreports/

 3. Neugarten, J., Acharya, A. & Silbiger, S. R. Effect of gender on the progression of nondiabetic renal disease: a meta-analysis. J Am Soc 
Nephrol 11, 319–329 (2000).

 4. Kummer, S., von Gersdorff, G., Kemper, M. J. & Oh, J. The influence of gender and sexual hormones on incidence and outcome of 
chronic kidney disease. Pediatr Nephrol 27, 1213–1219, https://doi.org/10.1007/s00467-011-1963-1 (2012).

 5. Elliot, S. J. et al. Estrogen deficiency accelerates progression of glomerulosclerosis in susceptible mice. Am J Pathol 162, 1441–1448, 
https://doi.org/10.1016/S0002-9440(10)64277-0 (2003).

 6. Antus, B. et al. Estradiol is nephroprotective in the rat remnant kidney. Nephrol Dial Transplant 18, 54–61 (2003).
 7. Mankhey, R. W., Bhatti, F. & Maric, C. 17beta-Estradiol replacement improves renal function and pathology associated with diabetic 

nephropathy. Am J Physiol Renal Physiol 288, F399–405, https://doi.org/10.1152/ajprenal.00195.2004 (2005).
 8. Maric, C., Sandberg, K. & Hinojosa-Laborde, C. Glomerulosclerosis and tubulointerstitial fibrosis are attenuated with 17beta-

estradiol in the aging Dahl salt sensitive rat. J Am Soc Nephrol 15, 1546–1556 (2004).
 9. Gross, M. L. et al. Beneficial Effects of Estrogens on Indices of Renal Damage in Uninephrectomized SHRsp Rats. J Am Soc Nephrol 

15, 348–358 (2004).
 10. Sakemi, T., Tomiyoshi, Y., Miyazono, M. & Ikeda, Y. Estrogen replacement therapy with its physiological dose does not eliminate the 

aggravating effect of ovariectomy on glomerular injury in hypercholesterolemic female Imai rats. Nephron 80, 324–330, https://doi.
org/10.1159/000045193 (1998).

 11. Catanuto, P. et al. 17 beta-estradiol and tamoxifen upregulate estrogen receptor beta expression and control podocyte signaling 
pathways in a model of type 2 diabetes. Kidney Int 75, 1194–1201, https://doi.org/10.1038/ki.2009.69 (2009).

 12. Hajdu, A. & Rona, G. The protective effect of estrogens against spontaneous pancratic islet and renal changes in aging male rats. 
Experientia 27, 956–957 (1971).

 13. Sakemi, T., Toyoshima, H., Shouno, Y. & Morito, F. Estrogen attenuates progressive glomerular injury in hypercholesterolemic male 
Imai rats. Nephron 69, 159–165, https://doi.org/10.1159/000188433 (1995).

 14. Kattah, A. G. et al. CKD in Patients with Bilateral Oophorectomy. Clin J Am Soc Nephrol, https://doi.org/10.2215/CJN.03990318 
(2018).

 15. Kattah, A. G. et al. Hormone therapy and urine protein excretion: a multiracial cohort study, systematic review, and meta-analysis. 
Menopause 25, 625–634, https://doi.org/10.1097/GME.0000000000001062 (2018).

 16. Baylis, C. Age-dependent glomerular damage in the rat. Dissociation between glomerular injury and both glomerular hypertension 
and hypertrophy. Male gender as a primary risk factor. J Clin Invest 94, 1823–1829, https://doi.org/10.1172/JCI117531 (1994).

 17. Lemos, C. C., Mandarim-de-Lacerda, C. A., Dorigo, D., Coimbra, T. M. & Bregman, R. Chronic renal failure in male and female rats. 
J Nephrol 18, 368–373 (2005).

 18. Stier, C. T. Jr., Chander, P. N., Rosenfeld, L. & Powers, C. A. Estrogen promotes microvascular pathology in female stroke-prone 
spontaneously hypertensive rats. Am J Physiol Endocrinol Metab 285, E232–239, https://doi.org/10.1152/ajpendo.00029.2003 (2003).

 19. Joles, J. A., van Goor, H. & Koomans, H. A. Estrogen induces glomerulosclerosis in analbuminemic rats. Kidney Int 53, 862–868, 
https://doi.org/10.1111/j.1523-1755.1998.00825.x (1998).

 20. Manolagas, S. C., O’Brien, C. A. & Almeida, M. The role of estrogen and androgen receptors in bone health and disease. Nat Rev 
Endocrinol 9, 699–712, https://doi.org/10.1038/nrendo.2013.179 (2013).

 21. Moe, S. et al. Definition, evaluation, and classification of renal osteodystrophy: a position statement from Kidney Disease: Improving 
Global Outcomes (KDIGO). Kidney Int 69, 1945–1953, https://doi.org/10.1038/sj.ki.5000414 (2006).

 22. Gluhovschi, G. et al. Chronic kidney disease and the involvement of estrogen hormones in its pathogenesis and progression. Rom J 
Intern Med 50, 135–144 (2012).

 23. Moe, S. M. et al. The pathophysiology of early-stage chronic kidney disease-mineral bone disorder (CKD-MBD) and response to 
phosphate binders in the rat. J Bone Miner Res 26, 2672–2681, https://doi.org/10.1002/jbmr.485 (2011).

 24. Moe, S. M. et al. A rat model of chronic kidney disease-mineral bone disorder. Kidney Int 75, 176–184, https://doi.org/10.1038/
ki.2008.456 (2009).

 25. Nagao, S. et al. Polycystic kidney disease in Han:SPRD Cy rats is associated with elevated expression and mislocalization of 
SamCystin. Am J Physiol Renal Physiol 299, F1078–1086, https://doi.org/10.1152/ajprenal.00504.2009 (2010).

 26. Moe, S. M. et al. Anti‐sclerostin antibody treatment in a rat model of progressive renal osteodystrophy. Journal of Bone and Mineral 
Research 30, 499–509 (2015).

 27. Newman, C. L. et al. Compromised vertebral structural and mechanical properties associated with progressive kidney disease and 
the effects of traditional pharmacological interventions. Bone 77, 50–56, https://doi.org/10.1016/j.bone.2015.04.021 (2015).

 28. Cowley, B. D. Jr. et al. Autosomal-dominant polycystic kidney disease in the rat. Kidney Int 43, 522–534 (1993).
 29. Kaspareit-Rittinghausen, J., Deerberg, F., Rapp, K. G. & Wcislo, A. A new rat model for polycystic kidney disease of humans. 

Transplant Proc 22, 2582–2583 (1990).
 30. Rathi, M. & Ramachandran, R. Sexual and gonadal dysfunction in chronic kidney disease: Pathophysiology. Indian J Endocrinol 

Metab 16, 214–219, https://doi.org/10.4103/2230-8210.93738 (2012).
 31. Allen, M. R. et al. Skeletal effects of zoledronic acid in an animal model of chronic kidney disease. Osteoporos Int 24, 1471–1481, 

https://doi.org/10.1007/s00198-012-2103-x (2013).
 32. Moe, S. M. et al. A comparison of calcium to zoledronic acid for improvement of cortical bone in an animal model of CKD. Journal 

of Bone and Mineral Research 29, 902–910 (2014).
 33. McElroy, J. F. & Wade, G. N. Short- and long-term effects of ovariectomy on food intake, body weight, carcass composition, and 

brown adipose tissue in rats. Physiol Behav 39, 361–365 (1987).
 34. Kalu, D. N. The ovariectomized rat model of postmenopausal bone loss. Bone Miner 15, 175–191 (1991).
 35. Nakamura, M., Ikeda, Y., Mine, M., Tomiyoshi, Y. & Sakemi, T. Somatostatin analogue attenuates estrogen-induced augmentation 

of glomerular injury in spontaneous hypercholesterolemic female Imai rats. Nephron 89, 448–454, https://doi.
org/10.1159/000046118 (2001).

 36. Tofovic, S. P., Dubey, R., Salah, E. M. & Jackson, E. K. 2-Hydroxyestradiol attenuates renal disease in chronic puromycin 
aminonucleoside nephropathy. J Am Soc Nephrol 13, 2737–2747 (2002).

 37. Mankhey, R. W., Wells, C. C., Bhatti, F. & Maric, C. 17beta-Estradiol supplementation reduces tubulointerstitial fibrosis by increasing 
MMP activity in the diabetic kidney. Am J Physiol Regul Integr Comp Physiol 292, R769–777, https://doi.org/10.1152/
ajpregu.00375.2006 (2007).

 38. Potier, M. et al. Estrogen-related abnormalities in glomerulosclerosis-prone mice: reduced mesangial cell estrogen receptor 
expression and prosclerotic response to estrogens. Am J Pathol 160, 1877–1885, https://doi.org/10.1016/S0002-9440(10)61134-0 
(2002).

 39. Stevenson, F. T. et al. Estrogen worsens incipient hypertriglyceridemic glomerular injury in the obese Zucker rat. Kidney Int 57, 
1927–1935, https://doi.org/10.1046/j.1523-1755.2000.00042.x (2000).

 40. Cowley, B. D., Rupp, J. C., Muessel, M. J. & Gattone, V. H. Gender and the effect of gonadal hormones on the progression of inherited 
polycystic kidney disease in rats. American journal of kidney diseases: the official journal of the National Kidney Foundation 29, 
265–272 (1997).

 41. Stringer, K. D. et al. Gender hormones and the progression of experimental polycystic kidney disease. Kidney Int 68, 1729–1739, 
https://doi.org/10.1111/j.1523-1755.2005.00589.x (2005).

https://doi.org/10.1038/s41598-019-44415-9
https://doi.org/10.1007/s00467-011-1963-1
https://doi.org/10.1016/S0002-9440(10)64277-0
https://doi.org/10.1152/ajprenal.00195.2004
https://doi.org/10.1159/000045193
https://doi.org/10.1159/000045193
https://doi.org/10.1038/ki.2009.69
https://doi.org/10.1159/000188433
https://doi.org/10.2215/CJN.03990318
https://doi.org/10.1097/GME.0000000000001062
https://doi.org/10.1172/JCI117531
https://doi.org/10.1152/ajpendo.00029.2003
https://doi.org/10.1111/j.1523-1755.1998.00825.x
https://doi.org/10.1038/nrendo.2013.179
https://doi.org/10.1038/sj.ki.5000414
https://doi.org/10.1002/jbmr.485
https://doi.org/10.1038/ki.2008.456
https://doi.org/10.1038/ki.2008.456
https://doi.org/10.1152/ajprenal.00504.2009
https://doi.org/10.1016/j.bone.2015.04.021
https://doi.org/10.4103/2230-8210.93738
https://doi.org/10.1007/s00198-012-2103-x
https://doi.org/10.1159/000046118
https://doi.org/10.1159/000046118
https://doi.org/10.1152/ajpregu.00375.2006
https://doi.org/10.1152/ajpregu.00375.2006
https://doi.org/10.1016/S0002-9440(10)61134-0
https://doi.org/10.1046/j.1523-1755.2000.00042.x
https://doi.org/10.1111/j.1523-1755.2005.00589.x


8Scientific RepoRts |          (2019) 9:7936  | https://doi.org/10.1038/s41598-019-44415-9

www.nature.com/scientificreportswww.nature.com/scientificreports/

 42. Xu, H. et al. Regulation of intestinal NaPi-IIb cotransporter gene expression by estrogen. Am J Physiol Gastrointest Liver Physiol 285, 
G1317–1324, https://doi.org/10.1152/ajpgi.00172.2003 (2003).

 43. Arjmandi, B. H., Hollis, B. W. & Kalu, D. N. In vivo effect of 17 beta-estradiol on intestinal calcium absorption in rats. Bone Miner 
26, 181–189 (1994).

 44. Vorland, C. J., Lachcik, P. L., Moe, S. M., Chen, N. X. & Hill Gallant, K. M. Effect of Kidney Disease Progression on Intestinal 
Phosphorus Absorption in Male Cy/+ Chronic Kidney Disease Rats. Journal of Bone and Mineral Research 33, 297–297 (2018).

Acknowledgements
This work was supported by a Women’s Global Health Institute Mildred Elizabeth Edmundson Research Grant 
(KMHG), NIH K01 DK102864 (KMHG), NIH R01 DK11087103 (SMM and MRA) and VA Merit Awards (SMM- 
BX001471 and MRA- BX003025). This project was funded, in part, with support from the Indiana Clinical and 
Translational Sciences Institute funded, in part by Award Number UL1TR002529 from the National Institutes 
of Health, National Center for Advancing Translational Sciences, Clinical and Translational Sciences Award. 
The content is solely the responsibility of the authors and does not necessarily represent the official views of the 
National Institutes of Health. The authors thank Shruthi Srinivasan for technical assistance.

Author Contributions
Author’s roles: Study design: KMHG. Study conduct: CJV, PJL, KMHG. Data collection: CJV, KMHG, NXC, 
SMM, MRA, CEM, EAS. Data interpretation: CJV, KMHG, SMM, MRA. Drafting manuscript: CJV and KMHG. 
Revising manuscript content: CJV, KMHG, SMM, MRA, NXC, PJL. Approving final version of manuscript: all 
authors. KMHG and CJV take responsibility for the integrity of the data analysis.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-019-44415-9.
Competing Interests: Dr. Vorland has nothing to disclose. Pamela Lachcik has nothing to disclose. Elizabeth 
Swallow has nothing to disclose. Dr. Metzger has nothing to disclose. Dr. Allen has nothing to disclose. Dr. 
Chen has nothing to disclose. Dr. Moe reports grants from NIH, Veterans Administration, Chugai, Keryx, and 
personal fees from Amgen outside the submitted work. Dr. Hill Gallant reports grants from Women’s Global 
Health Institute, Indiana Clinical and Translational Science Institute, National Institutes of Health/National 
Institute of Diabetes, Digestive and Kidney Disorders, and American Society for Bone and Mineral Research 
during the conduct of the study; grants from Chugai Pharmaceuticals, Inc., and personal fees from Reylpsa, 
Inc., Tricida, Inc., and Sanofi outside the submitted work.
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2019

https://doi.org/10.1038/s41598-019-44415-9
https://doi.org/10.1152/ajpgi.00172.2003
https://doi.org/10.1038/s41598-019-44415-9
http://creativecommons.org/licenses/by/4.0/

	Effect of ovariectomy on the progression of chronic kidney disease-mineral bone disorder (CKD-MBD) in female Cy/+ rats
	Materials and Methods
	Animals. 
	OVX and sham procedures. 
	Tissue collection. 
	Phosphorus and calcium balance and percent net absorption. 
	Plasma biochemistries. 
	Microcomputed tomography. 
	Statistics. 

	Results
	Discussion
	Acknowledgements
	Figure 1 OVX resulted in higher body mass relative to Sham.
	Figure 2 Plasma biochemistries over time between OVX and Sham surgery.
	Figure 3 Mineral balance and net mineral absorption at 35 weeks by OVX or Sham surgery.
	Figure 4 Micro-CT images of the proximal tibia.
	Table 1 Estradiol at baseline (10 weeks, pre-surgery) and 35 weeks.
	Table 2 Microstructural parameters of cancellous and cortical bone of the tibia measured by micro-CT.




