319 research outputs found

    From Zoom to the Clinic: Unique Student Challenges in Physical Therapy Clinical Education

    Get PDF
    While the abrupt shift in PT education (PTE) brought on by the pandemic created opportunities for educational innovation, it also brought relational separation and fragmented learning due to lockdowns, social distancing, face masks, and communication limited to virtual platforms. Academic programs increased use of virtual learning, rearranged curriculum, reduced lab and simulated learning time, and provided fewer, if any, opportunities for service learning and patient contact. Clinic sites paused clinic education experiences or hosted fewer students to maintain social distancing and limit disease exposure. As PTE returns to more typical curricular schedules and practices, it is important to be aware of the current challenges students may be facing. Common challenges include not only increased levels of anxiety and depression, but also problems with self-esteem and confidence, resilience, a growth mindset, and metacognition. This session will investigate the implications of the rise in prevalence of issues in internalizing professional identity and clinical competency for clinical education; the characteristics of unique mental health challenges, such as impostor phenomenon, compassion fatigue, and burnout; screening tools; and suggestions for successfully mentoring students who have low self-esteem, a lack of confidence, decreased resiliency, and imposter feelings

    NAPS: a residue-level nucleic acid-binding prediction server

    Get PDF
    Nucleic acid-binding proteins are involved in a great number of cellular processes. Understanding the mechanisms underlying these proteins first requires the identification of specific residues involved in nucleic acid binding. Prediction of NA-binding residues can provide practical assistance in the functional annotation of NA-binding proteins. Predictions can also be used to expedite mutagenesis experiments, guiding researchers to the correct binding residues in these proteins. Here, we present a method for the identification of amino acid residues involved in DNA- and RNA-binding using sequence-based attributes. The method used in this work combines the C4.5 algorithm with bootstrap aggregation and cost-sensitive learning. Our DNA-binding model achieved 79.1% accuracy, while the RNA-binding model reached an accuracy of 73.2%. The NAPS web server is freely available at http://proteomics.bioengr.uic.edu/NAPS

    The small molecule curcumin analog FLLL32 induces apoptosis in melanoma cells via STAT3 inhibition and retains the cellular response to cytokines with anti-tumor activity

    Get PDF
    Background: We characterized the biologic effects of a novel small molecule STAT3 pathway inhibitor that is derived from the natural product curcumin. We hypothesized this lead compound would specifically inhibit the STAT3 signaling pathway to induce apoptosis in melanoma cells. Results: FLLL32 specifically reduced STAT3 phosphorylation at Tyr705 (pSTAT3) and induced apoptosis at micromolar amounts in human melanoma cell lines and primary melanoma cultures as determined by annexin V/propidium iodide staining and immunoblot analysis. FLLL32 treatment reduced expression of STAT3-target genes, induced caspase-dependent apoptosis, and reduced mitochondrial membrane potential. FLLL32 displayed specificity for STAT3 over other homologous STAT proteins. In contrast to other STAT3 pathway inhibitors (WP1066, JSI-124, Stattic), FLLL32 did not abrogate IFN-γ-induced pSTAT1 or downstream STAT1-mediated gene expression as determined by Real Time PCR. In addition, FLLL32 did not adversely affect the function or viability of immune cells from normal donors. In peripheral blood mononuclear cells (PBMCs), FLLL32 inhibited IL-6-induced pSTAT3 but did not reduce signaling in response to immunostimulatory cytokines (IFN-γ, IL 2). Treatment of PBMCs or natural killer (NK) cells with FLLL32 also did not decrease viability or granzyme b and IFN-γ production when cultured with K562 targets as compared to vehicle (DMSO). Conclusions: These data suggest that FLLL32 represents a lead compound that could serve as a platform for further optimization to develop improved STAT3 specific inhibitors for melanoma therapy

    Using Extracellular Vesicles Released by GDNF-Transfected Macrophages for Therapy of Parkinson Disease

    Get PDF
    Extracellular vesicles (EVs) are cell-derived nanoparticles that facilitate transport of proteins, lipids, and genetic material, playing important roles in intracellular communication. They have remarkable potential as non-toxic and non-immunogenic nanocarriers for drug delivery to unreachable organs and tissues, in particular, the central nervous system (CNS). Herein, we developed a novel platform based on macrophage-derived EVs to treat Parkinson disease (PD). Specifically, we evaluated the therapeutic potential of EVs secreted by autologous macrophages that were transfected ex vivo to express glial-cell-line-derived neurotrophic factor (GDNF). EV-GDNF were collected from conditioned media of GDNF-transfected macrophages and characterized for GDNF content, size, charge, and expression of EV-specific proteins. The data revealed that, along with the encoded neurotrophic factor, EVs released by pre-transfected macrophages carry GDNF-encoding DNA. Four-month-old transgenic Parkin Q311(X)A mice were treated with EV-GDNF via intranasal administration, and the effect of this therapeutic intervention on locomotor functions was assessed over a year. Significant improvements in mobility, increases in neuronal survival, and decreases in neuroinflammation were found in PD mice treated with EV-GDNF. No offsite toxicity caused by EV-GDNF administration was detected. Overall, an EV-based approach can provide a versatile and potent therapeutic intervention for PD

    Modulation of SOCS protein expression influences the interferon responsiveness of human melanoma cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Endogenously produced interferons can regulate the growth of melanoma cells and are administered exogenously as therapeutic agents to patients with advanced cancer. We investigated the role of negative regulators of interferon signaling known as suppressors of cytokine signaling (SOCS) in mediating interferon-resistance in human melanoma cells.</p> <p>Methods</p> <p>Basal and interferon-alpha (IFN-α) or interferon-gamma (IFN-γ)-induced expression of SOCS1 and SOCS3 proteins was evaluated by immunoblot analysis in a panel of n = 10 metastatic human melanoma cell lines, in human embryonic melanocytes (HEM), and radial or vertical growth phase melanoma cells. Over-expression of SOCS1 and SOCS3 proteins in melanoma cells was achieved using the PINCO retroviral vector, while siRNA were used to inhibit SOCS1 and SOCS3 expression. Tyr<sup>701</sup>-phosphorylated STAT1 (P-STAT1) was measured by intracellular flow cytometry and IFN-stimulated gene expression was measured by Real Time PCR.</p> <p>Results</p> <p>SOCS1 and SOCS3 proteins were expressed at basal levels in melanocytes and in all melanoma cell lines examined. Expression of the SOCS1 and SOCS3 proteins was also enhanced following stimulation of a subset of cell lines with IFN-α or IFN-γ. Over-expression of SOCS proteins in melanoma cell lines led to significant inhibition of Tyr<sup>701</sup>-phosphorylated STAT1 (P-STAT1) and gene expression following stimulation with IFN-α (IFIT2, OAS-1, ISG-15) or IFN-γ (IRF1). Conversely, siRNA inhibition of SOCS1 and SOCS3 expression in melanoma cells enhanced their responsiveness to interferon stimulation.</p> <p>Conclusions</p> <p>These data demonstrate that SOCS proteins are expressed in human melanoma cell lines and their modulation can influence the responsiveness of melanoma cells to IFN-α and IFN-γ.</p

    Light-intensity physical activity and cardiometabolic biomarkers in US adolescents

    Get PDF
    BackgroundThe minimal physical activity intensity that would confer health benefits among adolescents is unknown. The purpose of this study was to examine the associations of accelerometer-derived light-intensity (split into low and high) physical activity, and moderate- to vigorous-intensity physical activity with cardiometabolic biomarkers in a large population-based sample.MethodsThe study is based on 1,731 adolescents, aged 12&ndash;19 years from the 2003/04 and 2005/06 National Health and Nutrition Examination Survey. Low light-intensity activity (100&ndash;799 counts/min), high light-intensity activity (800 counts/min to &lt;4 METs) and moderate- to vigorous-intensity activity (&ge;4 METs, Freedson age-specific equation) were accelerometer-derived. Cardiometabolic biomarkers, including waist circumference, systolic blood pressure, diastolic blood pressure, HDL-cholesterol, and C-reactive protein were measured. Triglycerides, LDL- cholesterol, insulin, glucose, and homeostatic model assessments of &beta;-cell function (HOMA-%B) and insulin sensitivity (HOMA-%S) were also measured in a fasting sub-sample (n=807).ResultsAdjusted for confounders, each additional hour/day of low light-intensity activity was associated with 0.59 (95% CI: 1.18&ndash;0.01) mmHG lower diastolic blood pressure. Each additional hour/day of high light-intensity activity was associated with 1.67 (2.94&ndash;0.39) mmHG lower diastolic blood pressure and 0.04 (0.001&ndash;0.07) mmol/L higher HDL-cholesterol. Each additional hour/day of moderate- to vigorous-intensity activity was associated with 3.54 (5.73&ndash;1.35) mmHG lower systolic blood pressure, 5.49 (1.11&ndash;9.77)% lower waist circumference, 25.87 (6.08&ndash;49.34)% lower insulin, and 16.18 (4.92&ndash;28.53)% higher HOMA-%S.ConclusionsTime spent in low light-intensity physical activity and high light-intensity physical activity had some favorable associations with biomarkers. Consistent with current physical activity recommendations for adolescents, moderate- to vigorous-intensity activity had favorable associations with many cardiometabolic biomarkers. While increasing MVPA should still be a public health priority, further studies are needed to identify dose-response relationships for light-intensity activity thresholds to inform future recommendations and interventions for adolescents.</div
    corecore