1,477 research outputs found
Macrospin limit and configurational anisotropy in nanoscale Permalloy triangles
In Permalloy submicron triangles, configurational anisotropy - a higher-order
form of shape anisotropy - yields three equivalent easy axes, imposed by the
structures' symmetry order. Supported by micromagnetic simulations, an
experimental method was devised to evaluate the nanostructure dimensions for
which a Stoner-Wohlfarth type of reversal could be used to describe this
particular magnetic anisotropy. In this regime, a straightforward procedure
using an in-plane rotating field allowed us to quantify experimentally the
six-fold anisotropy fields for triangles of different thicknesses and sizes
The Rab-binding profiles of bacterial virulence factors during infection
Legionella pneumophila, the causative agent of Legionnaire's disease, uses its type IV secretion system to translocate over 300 effector proteins into host cells. These effectors subvert host cell signaling pathways to ensure bacterial proliferation. Despite their importance for pathogenesis, the roles of most of the effectors are yet to be characterized. Key to understanding the function of effectors is the identification of host proteins they bind during infection. We previously developed a novel tandem-affinity purification (TAP) approach using hexahistidine and BirA-specific biotinylation tags for isolating translocated effector complexes from infected cells whose composition were subsequently deciphered by mass spectrometry. Here we further advanced the workflow for the TAP approach and determined the infection-dependent interactomes of the effectors SidM and LidA, which were previously reported to promiscuously bind multiple Rab GTPases in vitro. In this study we defined a stringent subset of Rab GTPases targeted by SidM and LidA during infection, comprising of Rab1A, 1B, 6, and 10; in addition, LidA targets Rab14 and 18. Taken together, this study illustrates the power of this approach to profile the intracellular interactomes of bacterial effectors during infection
A Model for High Temperature Superconductors using the Extended Hubbard Model
We derive a method to study the phase diagram for high temperature
superconductors (HTCS). Our starting point is the Hubbard Hamiltonian with a
weak attractive interaction to obtain the formation of bound pairs. We consider
this attractive potential at different positions for different compounds
accordingly to the experimental results of the coherence length. We then
construct a wave function of the BCS type by a variational method using the
Fourier transform of this extended Hubbard potential and then derive an energy
gap equation. This approach allows us to obtain the critical temperature as
function of the doping concentration which gives very good agreement with the
experimental phase diagrams of YBaCuO and La(Sr,Ba)CuO compounds.Comment: 9 pages, RevTex preprint style, 2 figs. packed with uufile
Separation of the first- and second-order contributions in magneto-optic Kerr effect magnetometry of epitaxial FeMn/NiFe bilayers
The influence of second-order magneto-optic effects on Kerr effect
magnetometry of epitaxial exchange coupled FeMn/NiFe-bilayers is investigated.
A procedure for separation of the first- and second-order contributions is
presented. The full angular dependence of both contributions during the
magnetization reversal is extracted from the experimental data and presented
using gray scaled magnetization reversal diagrams. The theoretical description
of the investigated system is based on an extended Stoner-Wohlfarth model,
which includes an induced unidirectional and fourfold anisotropy in the
ferromagnet, caused by the coupling to the antiferromagnet. The agreement
between the experimental data and the theoretical model for both the first- and
second-order contributions are good, although a coherent reversal of the
magnetization is assumed in the model.Comment: 6 pages, 7 figures, submitted to J. Appl. Phy
A Comparison of Nuggets and Clusters for Evaluating Timeline Summaries
There is growing interest in systems that generate timeline summaries by filtering high-volume streams of documents to retain only those that are relevant to a particular event or topic. Continued advances in algorithms and techniques for this task depend on standardized and reproducible evaluation methodologies for comparing systems. However, timeline summary evaluation is still in its infancy, with competing methodologies currently being explored in international evaluation forums such as TREC. One area of active exploration is how to explicitly represent the units of information that should appear in a 'good' summary. Currently, there are two main approaches, one based on identifying nuggets in an external 'ground truth', and the other based on clustering system outputs. In this paper, by building test collections that have both nugget and cluster annotations, we are able to compare these two approaches. Specifically, we address questions related to evaluation effort, differences in the final evaluation products, and correlations between scores and rankings generated by both approaches. We summarize advantages and disadvantages of nuggets and clusters to offer recommendations for future system evaluation
A Fermi Surface study of BaKBiO
We present all electron computations of the 3D Fermi surfaces (FS's) in
BaKBiO for a number of different compositions based on the
selfconsistent Korringa-Kohn-Rostoker coherent-potential-approximation
(KKR-CPA) approach for incorporating the effects of Ba/K substitution. By
assuming a simple cubic structure throughout the composition range, the
evolution of the nesting and other features of the FS of the underlying
pristine phase is correlated with the onset of various structural transitions
with K doping. A parameterized scheme for obtaining an accurate 3D map of the
FS in BaKBiO for an arbitrary doping level is developed. We
remark on the puzzling differences between the phase diagrams of
BaKBiO and BaPbBiO by comparing aspects
of their electronic structures and those of the end compounds BaBiO,
KBiO and BaPbO. Our theoretically predicted FS's in the cubic phase are
relevant for analyzing high-resolution Compton scattering and
positron-annihilation experiments sensitive to the electron momentum density,
and are thus amenable to substantial experimental verification.Comment: 12 pages, 7 figures, to appear in Phys. Rev.
Doping Dependence of the Chemical Potential in Cuprate High- Superconductors I: LaSrCuO
The names of the authors, which were inadvertedly lacking in the tex-file
submitted two days ago, have been added.Comment: 10 pages, figures on request. Revtex, version 2, Materials Science
Center Internal Report Number VSGD.94.6.
Heisenberg exchange enhancement by orbital relaxation in cuprate compounds
We calculate the Heisenberg exchange J in the quasi-2D antiferromagnetic
cuprates La2CuO4, YBa2Cu3O6, Nd2CuO4 and Sr2CuO2Cl2. We apply all-electron
(MC)SCF and non-orthogonal CI calculations to [Cu2O11]18-, [Cu2O9]14-,
[Cu2O7]10- and [Cu2O7Cl4]14- clusters in a model charge embedding. The (MC)SCF
triplet and singlet ground states are well characterized by Cu2+ (dx2-y2) and
O2-. The antiferromagnetic exchange is strongly enhanced by admixing relaxed
(MC)SCF triplet and singlet excited states, in which a single electron is
transferred from the central O ion to Cu. We ascribe this effect to orbital
relaxation in the charge transfer component of the wave function. Close
agreement with experiment is obtained.Comment: publishe
- …
