682 research outputs found

    Test-particle acceleration in a hierarchical three-dimensional turbulence model

    Get PDF
    The acceleration of charged particles is relevant to the solar corona over a broad range of scales and energies. High-energy particles are usually detected in concomitance with large energy release events like solar eruptions and flares, nevertheless acceleration can occur at smaller scales, characterized by dynamical activity near current sheets. To gain insight into the complex scenario of coronal charged particle acceleration, we investigate the properties of acceleration with a test-particle approach using three-dimensional magnetohydrodynamic (MHD) models. These are obtained from direct solutions of the reduced MHD equations, well suited for a plasma embedded in a strong axial magnetic field, relevant to the inner heliosphere. A multi-box, multi-scale technique is used to solve the equations of motion for protons. This method allows us to resolve an extended range of scales present in the system, namely from the ion inertial scale of the order of a meter up to macroscopic scales of the order of 1010\,km (1/1001/100th of the outer scale of the system). This new technique is useful to identify the mechanisms that, acting at different scales, are responsible for acceleration to high energies of a small fraction of the particles in the coronal plasma. We report results that describe acceleration at different stages over a broad range of time, length and energy scales.Comment: 12 pages, 8 figures, ApJ (in press

    Kinetic dissipation and anisotropic heating in a turbulent collisionless plasma

    Full text link
    The kinetic evolution of the Orszag-Tang vortex is studied using collisionless hybrid simulations. In the magnetohydrodynamic regime this vortex leads rapidly to broadband turbulence. Significant differences from MHD arise at small scales, where the fluid scale energy dissipates into heat almost exclusively through the magnetic field because the protons are decoupled from the magnetic field. Although cyclotron resonance is absent, the protons heat preferentially in the plane perpendicular to the mean field, as in the corona and solar wind. Effective transport coefficients are calculated.Comment: 4 pages, 4 figures. Submitted to PR

    Solar wind turbulent heating by interstellar pickup protons: 2-component model

    Get PDF
    We apply a recently developed 2-component phenomenology to the turbulent heating of the core solar wind protons as seen at the Voyager 2 spacecraft. We find that this new description improves the model predictions of core temperature and correlation scale of the fluctuations, yielding excellent agreement with the Voyager measurements. However, the model fluctuation intensity substantially exceeds the Voyager measurements in the outer heliosphere, indicating that this picture needs further refinement

    Magnetic field reversals and long-time memory in conducting flows

    Get PDF
    Employing a simple ideal magnetohydrodynamic model in spherical geometry,we show that the presence of either rotation or finite magnetic helicity is sufficient to induce dynamical reversals of the magnetic dipole moment. The statistical character of the model is similar to that of terrestrial magnetic field reversals, with the similarity being stronger when rotation is present.The connection between long time correlations, 1/f1/f noise, and statistics of reversals is supported, consistent with earlier suggestions.Comment: accepted in Physical Review

    Empirical Constraints on Proton and Electron Heating in the Fast Solar Wind

    Full text link
    We analyze measured proton and electron temperatures in the high-speed solar wind in order to calculate the separate rates of heat deposition for protons and electrons. When comparing with other regions of the heliosphere, the fast solar wind has the lowest density and the least frequent Coulomb collisions. This makes the fast wind an optimal testing ground for studies of collisionless kinetic processes associated with the dissipation of plasma turbulence. Data from the Helios and Ulysses plasma instruments were collected to determine mean radial trends in the temperatures and the electron heat conduction flux between 0.29 and 5.4 AU. The derived heating rates apply specifically for these mean plasma properties and not for the full range of measured values around the mean. We found that the protons receive about 60% of the total plasma heating in the inner heliosphere, and that this fraction increases to approximately 80% by the orbit of Jupiter. A major factor affecting the uncertainty in this fraction is the uncertainty in the measured radial gradient of the electron heat conduction flux. The empirically derived partitioning of heat between protons and electrons is in rough agreement with theoretical predictions from a model of linear Vlasov wave damping. For a modeled power spectrum consisting only of Alfvenic fluctuations, the best agreement was found for a distribution of wavenumber vectors that evolves toward isotropy as distance increases.Comment: 11 pages (emulateapj style), 5 figures, ApJ, in pres

    A turbulence-driven model for heating and acceleration of the fast wind in coronal holes

    Get PDF
    A model is presented for generation of fast solar wind in coronal holes, relying on heating that is dominated by turbulent dissipation of MHD fluctuations transported upwards in the solar atmosphere. Scale-separated transport equations include large-scale fields, transverse Alfvenic fluctuations, and a small compressive dissipation due to parallel shears near the transition region. The model accounts for proton temperature, density, wind speed, and fluctuation amplitude as observed in remote sensing and in situ satellite data.Comment: accepted for publication in ApJ
    corecore