541 research outputs found
The O(N) Model at Finite Temperature: Renormalization of the Gap Equations in Hartree and Large-N Approximation
The temperature dependence of the sigma meson and pion masses is studied in
the framework of the O(N) model. The Cornwall-Jackiw-Tomboulis formalism is
applied to derive gap equations for the masses in the Hartree and large-N
approximations. Renormalization of the gap equations is carried out within the
cut-off and counter-term renormalization schemes. A consistent renormalization
of the gap equations within the cut-off scheme is found to be possible only in
the large-N approximation and for a finite value of the cut-off. On the other
hand, the counter-term scheme allows for a consistent renormalization of both
the large-N and Hartree approximations. In these approximations, the meson
masses at a given nonzero temperature depend in general on the choice of the
cut-off or renormalization scale. As an application, we also discuss the
in-medium on-shell decay widths for sigma mesons and pions at rest.Comment: 21 pages, 6 figures, typos corrected and refs. added, accepted in
Journal of Physics
Some Applications of Thermal Field Theory to Quark-Gluon Plasma
The lecture provides a brief introduction of thermal field theory within
imaginary time formalism, the Hard Thermal Loop perturbation theory and some of
its application to the physics of the quark-gluon plasma, possibly created in
relativistic heavy ion collisions.Comment: 17 pages, 12 figures : Lectures given in "Workshop on Hadron Physics"
during March 7-17, 2005, Puri, Indi
Quench Induced Vortices in the Symmetry Broken Phase of Liquid He
Motivated by the study of cosmological phase transitions, our understanding
of the formation of topological defects during spontaneous symmetry-breaking
and the associated non-equilibrium field theory has recently changed.
Experiments have been performed in superfluid He to test the new ideas
involved. In particular, it has been observed that a vortex density is seen
immediately after pressure quenches from just below the transition.
We discuss possible interpretations of these vortices, conclude they are
consistent with our ideas of vortex formation and propose a modification of the
original experiments.Comment: 29 pages, RevTeX with one EPS figur
MIS-C-Implications for the Pediatric Surgeon: An Algorithm for Differential Diagnostic Considerations.
BACKGROUND: multisystem inflammatory syndrome in children (MIS-C) is a new disease associated with a recent infection with severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). Affected children can present predominantly with abdominal symptoms, fever and high inflammatory parameters that might lead to a consult by the pediatric surgeon and an indication for surgery. METHODS: clinical data of three patients with MIS-C that underwent surgery were collected. Histopathological analysis of the appendix was performed. RESULTS: we present the clinical course of three children with fever, abdominal pain and vomiting for several days. Clinical examination and highly elevated inflammation markers led to indication for laparoscopy; appendectomy was performed in two patients. Because of intraoperative findings or due to lack of postoperative improvement, all patients were reevaluated and tested positive for MIS-C associated laboratory parameters and were subsequently treated with corticosteroids, intravenous immunoglobulins, acetyl salicylic acid and/or light molecular weight heparin. CONCLUSIONS: we discuss the implications of MIS-C as a new differential diagnosis and stress the importance of assessing the previous medical history, identifying patterns of symptoms and critically surveilling the clinical course. We implemented an algorithm for pediatric surgeons to consider MIS-C as a differential diagnosis for acute abdomen that can be integrated into the surgical workflow
Control of neural crest induction by MarvelD3-mediated attenuation of JNK signalling
Tight junctions are required for the formation of tissue barriers and function as suppressors of signalling mechanisms that control gene expression and cell behaviour; however, little is known about the physiological and developmental importance of such signalling functions. Here, we demonstrate that depletion of MarvelD3, a transmembrane protein of tight junctions, disrupts neural crest formation and, consequently, development of neural crest-derived tissues during Xenopus embryogenesis. Using embryos and explant cultures combined with a small molecule inhibitor or mutant mRNAs, we show that MarvelD3 is required to attenuate JNK signalling during neural crest induction and that inhibition of JNK pathway activation is sufficient to rescue the phenotype induced by MarvelD3 depletion. Direct JNK stimulation disrupts neural crest development, supporting the importance of negative regulation of JNK. Our data identify the junctional protein MarvelD3 as an essential regulator of early vertebrate development and neural crest induction and, thereby, link tight junctions to the control and timing of JNK signalling during early development
The non-convex shape of (234) Barbara, the first Barbarian
Asteroid (234) Barbara is the prototype of a category of asteroids that has
been shown to be extremely rich in refractory inclusions, the oldest material
ever found in the Solar System. It exhibits several peculiar features, most
notably its polarimetric behavior. In recent years other objects sharing the
same property (collectively known as "Barbarians") have been discovered.
Interferometric observations in the mid-infrared with the ESO VLTI suggested
that (234) Barbara might have a bi-lobated shape or even a large companion
satellite. We use a large set of 57 optical lightcurves acquired between 1979
and 2014, together with the timings of two stellar occultations in 2009, to
determine the rotation period, spin-vector coordinates, and 3-D shape of (234)
Barbara, using two different shape reconstruction algorithms. By using the
lightcurves combined to the results obtained from stellar occultations, we are
able to show that the shape of (234) Barbara exhibits large concave areas.
Possible links of the shape to the polarimetric properties and the object
evolution are discussed. We also show that VLTI data can be modeled without the
presence of a satellite.Comment: 10 pages, 6 figure
Lymphatic vessel density is associated with CD8<sup>+</sup> T cell infiltration and immunosuppressive factors in human melanoma.
Increased density of tumor-associated lymphatic vessels correlates with poor patient survival in melanoma and other cancers, yet lymphatic drainage is essential for initiating an immune response. Here we asked whether and how lymphatic vessel density (LVD) correlates with immune cell infiltration in primary tumors and lymph nodes (LNs) from patients with cutaneous melanoma. Using immunohistochemistry and quantitative image analysis, we found significant positive correlations between LVD and CD8 <sup>+</sup> T cell infiltration as well as expression of the immunosuppressive molecules inducible nitric oxide synthase (iNOS) and 2,3-dioxygénase (IDO). Interestingly, similar associations were seen in tumor-free LNs adjacent to metastatic ones, indicating loco-regional effects of tumors. Our data suggest that lymphatic vessels play multiple roles at tumor sites and LNs, promoting both T cell infiltration and adaptive immunosuppressive mechanisms. Lymph vessel associated T cell infiltration may increase immunotherapy success rates provided that the treatment overcomes adaptive immune resistance
Theranostic body fluid cleansing: rationally designed magnetic particles enable capturing and detection of bacterial pathogens
We report on theoretical and experimental considerations on bacteria capturing and enrichment via magnetic separation enabling integrated diagnosis and treatment of blood stream infections. We show optimization of carrier-pathogen interactions based on a mathematical model followed by an experimental proof-of-concept study along with investigations on the process safety
- …