31 research outputs found

    BAYESIAN INFERENCE FOR A COVARIANCE MATRIX

    Get PDF
    Covariance matrix estimation arises in multivariate problems including multivariate normal sampling models and regression models where random effects are jointly modeled, e.g. random-intercept, random-slope models. A Bayesian analysis of these problems requires a prior on the covariance matrix. Here we compare an inverse Wishart, scaled inverse Wishart, hierarchical inverse Wishart, and a separation strategy as possible priors for the covariance matrix. We evaluate these priors through a simulation study and application to a real data set. Generally all priors work well with the exception of the inverse Wishart when the true variance is small relative to prior mean. In this case, the posterior for the variance is biased toward larger values and the correlation is biased toward zero. This bias persists even for large sample sizes and therefore caution should be used when using the inverse Wishart prior

    Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in the United States

    Get PDF
    Short-term probabilistic forecasts of the trajectory of the COVID-19 pandemic in the United States have served as a visible and important communication channel between the scientific modeling community and both the general public and decision-makers. Forecasting models provide specific, quantitative, and evaluable predictions that inform short-term decisions such as healthcare staffing needs, school closures, and allocation of medical supplies. Starting in April 2020, the US COVID-19 Forecast Hub (https://covid19forecasthub.org/) collected, disseminated, and synthesized tens of millions of specific predictions from more than 90 different academic, industry, and independent research groups. A multimodel ensemble forecast that combined predictions from dozens of groups every week provided the most consistently accurate probabilistic forecasts of incident deaths due to COVID-19 at the state and national level from April 2020 through October 2021. The performance of 27 individual models that submitted complete forecasts of COVID-19 deaths consistently throughout this year showed high variability in forecast skill across time, geospatial units, and forecast horizons. Two-thirds of the models evaluated showed better accuracy than a naïve baseline model. Forecast accuracy degraded as models made predictions further into the future, with probabilistic error at a 20-wk horizon three to five times larger than when predicting at a 1-wk horizon. This project underscores the role that collaboration and active coordination between governmental public-health agencies, academic modeling teams, and industry partners can play in developing modern modeling capabilities to support local, state, and federal response to outbreaks

    The United States COVID-19 Forecast Hub dataset

    Get PDF
    Academic researchers, government agencies, industry groups, and individuals have produced forecasts at an unprecedented scale during the COVID-19 pandemic. To leverage these forecasts, the United States Centers for Disease Control and Prevention (CDC) partnered with an academic research lab at the University of Massachusetts Amherst to create the US COVID-19 Forecast Hub. Launched in April 2020, the Forecast Hub is a dataset with point and probabilistic forecasts of incident cases, incident hospitalizations, incident deaths, and cumulative deaths due to COVID-19 at county, state, and national, levels in the United States. Included forecasts represent a variety of modeling approaches, data sources, and assumptions regarding the spread of COVID-19. The goal of this dataset is to establish a standardized and comparable set of short-term forecasts from modeling teams. These data can be used to develop ensemble models, communicate forecasts to the public, create visualizations, compare models, and inform policies regarding COVID-19 mitigation. These open-source data are available via download from GitHub, through an online API, and through R packages

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    A first update on mapping the human genetic architecture of COVID-19

    Get PDF
    peer reviewe

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Bayesian Inference for a Covariance Matrix

    Get PDF
    Covariance matrix estimation arises in multivariate problems including multivariate normal sampling models and regression models where random effects are jointly modeled, e.g. random-intercept, random-slope models. A Bayesian analysis of these problems requires a prior on the covariance matrix. Here we compare an inverse Wishart, scaled inverse Wishart, hierarchical inverse Wishart, and a separation strategy as possible priors for the covariance matrix. We evaluate these priors through a simulation study and application to a real data set. Generally all priors work well with the exception of the inverse Wishart when the true variance is small relative to prior mean. In this case, the posterior for the variance is biased toward larger values and the correlation is biased toward zero. This bias persists even for large sample sizes and therefore caution should be used when using the inverse Wishart prior.This is a proceeding from the 26th Annual Conference on Applied Statistics in Agriculture, Manhattan, Kansas, April 27-29, 2014. doi: 10.4148/2475-7772.1004.</p

    Contour prairie strips affect adjacent soil but have only slight effects on crops

    Get PDF
    Prairie strips, or plantings of diverse perennial vegetation integrated into cropland, can have disproportionate ecological benefits compared to the amount of land they occupy. These benefits include improved water quality, reduced soil loss, reduced nutrient loss, and increased abundance and diversity of wildlife. However, the impacts of prairie strips on the adjacent cropland soil and crop health are unknown. We assessed the effect of long-term prairie strips on plant-available nutrients in adjacent soils (from 0.1 to 9 m distance from prairie strips), gravimetric soil moisture, soybean (Glycine max (L.) Merr.) and maize (Zea mays L.) leaf greenness (via soil plant analysis development or SPAD), and yield. Our results show strong effects of prairie strips on plant-available nutrients and early crop health in adjacent soils but little effect on soybean and maize grain yields. The prairie strip effects were strongly determined by crop (maize vs. soybean) but also likely climate. Prairie strips reduced soil moisture by 6% in adjacent cropland soils (This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
    corecore