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Abstract

Covariance matrix estimation arises in multivariate problems including multivariate
normal sampling models and regression models where random effects are jointly mod-
eled, e.g. random-intercept, random-slope models. A Bayesian analysis of these prob-
lems requires a prior on the covariance matrix. Here we compare an inverse Wishart,
scaled inverse Wishart, hierarchical inverse Wishart, and a separation strategy as pos-
sible priors for the covariance matrix. We evaluate these priors through a simulation
study and application to a real data set. Generally all priors work well with the excep-
tion of the inverse Wishart when the true variance is small relative to prior mean. In
this case, the posterior for the variance is biased toward larger values and the correla-
tion is biased toward zero. This bias persists even for large sample sizes and therefore
caution should be used when using the inverse Wishart prior.

1 Introduction

Covariance matrix estimation arises in multivariate problems including multivariate nor-
mal sampling models and regression models where random effects are jointly modeled, e.g.
random-intercept, random-slope models. Bayesian estimation of a covariance matrix requires
a prior for the covariance matrix . The natural conjugate prior for the multivariate normal
distribution is the inverse Wishart distribution (Barnard et al. 2000). Due to its conjugacy,
this is the most common prior implemented in Bayesian software. However, this prior has
issues: the uncertainty for all variances is controlled by a single degree of freedom param-
eter (Gelman et al. 2013), the marginal distribution for the variances has low density in a
region near zero (Gelman 2006), and there is an a priori dependence between correlations
and variances (Tokuda et al. 2011). These characteristics of the prior can impact posterior
inferences about the covariance matrix.
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Alternative covariance matrix priors have been proposed including the scaled inverse
Wishart (O’Malley and Zaslavsky 2005), a hierarchial inverse Wishart (Huang et al. 2013),
and a separation strategy (Barnard et al. 2000). However Tokuda et al. (2011) states that

Even fewer analytical results are known for these families, making it even more
challenging to understand precisely the properties of such distributions. Conse-
quently, our analytical understanding of these distributions falls short of provid-
ing us a full understanding of the inverse-Wishart distribution.

The objective of this study is to understand the impact of these prior choices on the
posterior inference of the covariance matrix. We select some of the proposed prior models
in the literature and first run a simulation study to assess the impact on posterior, then we
apply each model to a real data set consisting of bird counts in national forest in the Great
Lakes.

The rest of this paper is organized as follows: Section 2 describes the statistical methods
and the covariance prior distributions we use. Section 3 presents a simulation study consisting
in simulate data from a multivariate normal model and make inference about the covariance
matrix to compare the different priors. Section 4 presents an application to bird counts in
the Superior National Forest. Finally, Section 5 provides the applied modeler with strategies
for estimating a covariance matrix.

2 Statistical Models

Consider the multivariate normal model, that is let Y; € R? for ¢ = 1,...,n and assume
Y, YN (1, ¥) with g € R? and X is a d-dimensional positive definite matrix.

n

p(ylu, T) o< S| exp {—% > wi—w) 'S i - u)} = %] ?exp {—%tr(E_ISM)} (1)

=1

The likelihood is provided in equation (1) where y represents the entire data and S, =
>y — )y — )"

For this study, the primary parameter of interest is the matrix ¥ with elements X;;.
We will often refer to the standard deviations o; and correlations p;; where af = >, and
Eij = Pij0i0;.

In the following subsections, we introduce a number of covariance matrix prior classes:
inverse Wishart, scaled inverse Wishart, hierarchical inverse Wishart, and a separation strat-

egy.

2.1 Inverse Wishart prior

The natural conjugate prior for a covariance matrix is the inverse Wishart (IW) prior
(Barnard et al. 2000).

p(E) o || WD 2 hir(AS Y )

New Prairie Press

https:/newpralp T Ase e LSRR 2L s eiogh 1



Conference on Applied Statistics in Agriculture
26th Annual Conference on Applied Statistics in Ag@@ﬂ&ﬂﬁ%tate University

The IW prior has density provided in equation (2) where A € R? is a positive definite d
dimensional matrix and v is a scalar degrees of freedom. For a proper prior, v > d — 1. The
mean is E(Y) = 5y = -—4— for v >d+ 1.

The IW prior is commonly used due to its conjugacy properties with the normal sampling
model. Specifically, the full conditional for ¥ is Y|y, u ~ IW(n + vy, Ag + S,). If p|X ~
N(po,2/kKo), then the marginal posterior for 3, Y|y, has an IW distribution (see Sec 3.6 of
Gelman et al. (2013)). This conjugacy allows easy incorporation into Markov chain Monte
Carlo (MCMC) approaches based on Gibbs sampling.

Using an inverse Wishart prior for the covariance matrix implies a scaled inverse chi-
square distribution' for each variance o7 ~ inv-x?(v — d + 1, 2%5) where \;; is the i
diagonal entry of A. If A is a diagonal matrix, each correlation has marginal density as
p(pij) o< (1 — p?j)(”*dﬂ)/z. A default approach for the IW prior sets A =l and v = d + 1
where I is an identity matrix. A diagonal A and v = d + 1 results in marginal uniform
distributions for all correlations.

There are a least three problems with the IW prior. First, the uncertainty for all vari-
ance parameters is controlled by the single degree of freedom parameter and thus provides no
flexibility to incorporate different amounts of prior knowledge to different variance compo-
nents (see Sec 19.2 of Gelman et al. (2003)). Second, when v > 1, the implied scaled inv-y?
distribution on each individual variance has extremely low density in a region near zero and
thus causes bias in the result posteriors for these variances (Gelman 2006). Third, the IW
prior imposes a dependency between the correlations and the variances. In particular larger
variances are associated with absolute values of the correlations near 1 while small variances
are associated with correlations near zero (Tokuda et al. 2011). We illustrate the latter two
problems in Section 3.

2.2 Scaled Inverse Wishart

An alternative to the IW prior is the scaled inverse Wishart (SIW) prior which is based
on the inverse Wishart distribution but adds additional parameters for flexibility (O’Malley
and Zaslavsky 2005). The SIW prior defines ¥ = AQA where A is a diagonal matrix with
Aii = 51’7 then

Q ~ IW(r,A) , log(6) ™ N(b;, €2) (3)

We use the notation ¥ ~ SIW (v, A, b,€) to refer to this prior. By construction, the
SIW prior implies that o; = 6;v/Qy, and ;; = 6;0;Q;;. Thus each standard deviation is
the product of a log-normal and the square root of a scaled inv-y? and the correlations
pi; = Qij/\/QiiQ;; have the same distribution they had under the inverse Wishart on Q.

This prior is recommended by Gelman and Hill (2007), setting v =d+ 1 and A =1 to
ensure uniform priors on the correlations as in the IW prior but now there is more flexibility

!The scaled inverse chi-square denoted by X ~ inv-x2(v,s?) has a density function given by p(z) =

Y a3V (- 20)
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on incorporating prior information about the standard deviations.

2.3 Hierarchical Half-t prior

Recently, Huang et al. (2013) proposed a hierarchical approach for the covariance matrix as
shown in equation (4).

2
E~IW(w+d—1,2vA) |, N ! Ga (%,é) with E(Ai)—% (4)
where A is diagonal matrix with i*" element \;.

This prior implies a half ¢ distribution with v degrees of freedom, location parameter
0, and scale parameter &. The marginal distribution implied for correlations is giving by
p(p) < (1 — p?)2 ! then letting v = 2 implies marginally uniform distribution for the
correlation coefficient. We use the notation ¥ ~ HIW, (v, &) to denote this prior.

A similar approach was proposed by Daniels and Kass (1999) and Bouriga and Féron
(2013), they use flat priors for the diagonal entries of A matrix and put a prior on the degrees
of freedom parameter. An important advantage of HIW}, is the implied half-t prior on the
standard deviations which is recommended by Gelman (2006).

2.4 Separation Strategy

Barnard et al. (2000) propose the a separation strategy (SS) where the standard deviations
and correlations are modeled independently and then combined to form a prior on the co-
variance matrix. They decompose the covariance as > = ARA where A is a diagonal matrix
with the 7" element o; and R is a correlation matrix with pij as the i'" row and j column
element of R.

Barnard et al. (2000) constructs a correlation matrix R from an inverse Wishart dis-
tribution. Specifically, let @ ~ IW(v,I) then R = AQA where A is a diagonal matrix
with 7" diagonal element Q;-l/ ?. The prior density for the correlation matrix is p(R)
|R|~ 2R D([F_, ##)% where r¥ is the ith diagonal element of R~'. They then assume a
log-normal distribution for the logarithm of the standard deviations, i.e. log(o;) < N, &).
We use the notation ¥ ~ BMM,,,,.(v, b, ) to denote this prior.

Under the BMM,,,,, specification, individual correlations have the marginal density p(p;;) o
(1—p7) =5~ and then setting v = d+1 lead to marginally uniformly distributed correlations
which are also independent from the variances by construction.

The main disadvantage of BMM,,, is computational. With more recently developed
software, e.g. Stan (Stan Development Team 2014a), this restriction is not as detrimental
since this software is not based on Gibbs sampling but instead on Hamiltonian Monte Carlo
(HMC) which is a Metropolis strategy for all parameters simultaneously. In fact, the STAN
manual (Stan Development Team 2014b) recommends following a separation strategy, but

suggests the LKJ prior for the correlation Lewandowski et al. (2009). In high dimensions
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(d > 10), the LKJ prior concentrates mass near zero correlations and therefore we do not
use it here.

3 Simulation study results

In this section we carry out a simulation based analysis to assess the performance of these
different covariance matrix prior. First, we simulate from each prior to study the a priori
relationship between correlations and standard deviations. Second, we simulate data from
the model and analyze posterior means to determine the impact prior choice has on posterior
inference. Table 1 presents the hyperparameter values used in both simulations study for
every prior.

We started with the default IW(d + 1,1) prior which implies a marginal uniform prior on
the correlations and an IG(1,1/2) marginal prior for the variances. We set hyperparameters
for the other three priors to imply marginal uniform priors for the correlations and prior
medians on the variances to match the median of an IG(1,1/2) of 0.72.

Table 1: Parameter values for simulation study

Prior Values for prior sampling Values for posterior inference
IW(v, A) v=d+1, A=1 v=d+1, A=1

SIW (v, A, b, §) b=0,=11np=d+1,A=081|b=0,§ =100, rp=d+1,A=1
HIW (v, §) v=2&§ =104 v=2,& = 1000
BMM,,..,(v,,0,&) | v =d+1, b; =1log(.72)/2 , & =1 v=d+1,b=0,¢& =100

3.1 Sampling from the priors

Figure 1 shows a scatterplot with the first two standard deviations from 10,000 draws from
each of the four priors. The IW prior implies a positive relationship among the standard
deviations. Also large correlations values appear more predominantly when the two variances
are high, while low correlations appears when variances are low.

The SIW and HIW},; priors show a similar picture to the IW prior but the dependence is
weaker. For instance, the high correlations are mostly present when standard deviations are
also high, however we do see some red points for small values of the standard deviations. In
contrast, the BMM,,,, prior displays draws that are independent by construction.

3.2 Impact on posterior

The prior relationship between standard deviations and correlations presented in the previ-
ous section may or may not be an issue depending on how much this relationship impacts
the posterior. To concentrate on estimation of the covariance matrix and its constitutive
components, we simulate mean-zero, normally distributed data in two and ten dimensions
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Figure 1: Samples from the prior distribution for the first two standard deviations coded by
absolute value of the correlation for the four covariance matrix priors (columns) for a two-

and ten-dimensional matrix (rows).

with equal variances in all dimensions. A similar approach is taken by Daniels and Kass

(1999) and Bouriga and Féron (2013) in their simulations.

We study the sensitivity of correlation and standard deviation point estimates to the
choice of the covariance matrix prior. Table 2 shows the sample size, standard deviation,
and correlations used in the simulation study. We conducted a full factorial experiment with

5 replicates at each combination.

Table 2: Simulation scenarios. Specific values used in simulations for each parameter.

Bivariate Ten-dimensional
Sample size (n) 10, 50, 250 10, 50
Standard deviation (¢)  0.01, 0.1, 1, 10, 100 0.1, 1, 100
Correlation (p) 0, 0,25, 0.5, 0.75, 0.99 0, 0.99

To reduce Monte Carlo variability in the simulations, data were simulated for ¢ = 1 and
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then rescaled to get obtain simulations with the other variances. For instance, five replicate
data sets that consists of ten observations from a bivariate independent standard normal,
ie. n=10,d =2 p =0 and o0 = 1, were simulated. Each simulated value is multiplied by
0.01 (or 0.1, 10, and 100) to obtain data sets with standard deviation approximately 0.01
(or 0.1, 10, and 100).

The models are estimated using Stan software (Stan Development Team (2014a)) which
uses a HMC algorithm to construct posterior samples with the No U-turn sampler (NUTS,
Hoffman and Gelman (2011)) strategy. Default initial values were used. Model convergence
is monitored using the potential scale reduction factor (Gelman et al. 2003). Initially, 3
chains with 1000 iterations after burn-in is used for every model. Whenever the reduction
factor is bigger than 1.1 a longer model with 2000 iterations per chain after burn-in period
is estimated.

3.2.1 Inference for Correlation coeflicient

For inference, the true sampling model is assumed and the covariance matrix priors shown
in Table 1 were assumed with the parameter values for posterior inference column. Only the
bivariate results are shown here but the ten-dimensional results are similar.

Posterior Mean

u

0S¢

| | | | | T | | | |
0.0 05 1.0 0.0 05 1.0 0.0 05 1.0 0.0 05 1.0
True Correlation

prior IW 4 SIW = HIWht BMMmu

Figure 2: Posterior mean of the correlation (vertical axis) versus jittered true correlations
for the range of true standard deviations (columns) and sample sizes (rows) using the four
covariance matrix priors.
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Figure 2 shows the estimated posterior means compared with the values used in the
simulation. This figure shows that when the standard deviation is small the IW prior heavily
shrinks the posterior correlation towards 0 even if the true correlation is close to 1. This bias
is attenuated as the sample size increases, but is still remarkably large with 250 observations
when the standard deviation is around 0.01.

All other priors appear to recover the true correlation with a slight bias toward zero for
small sample sizes.

Figure 3 shows a scatterplot of the standard deviation posterior mean against the values
used in the simulation. The figure shows that the IW prior overestimates the standard
deviation for true values of the standard deviation that are small. This bias is attenuated
somewhat as sample size increase, but when the true standard deviation is 0.01 the bias is
still quite large even with 250 observations.

p=0 p=0.25 p=0.99

c

© >
) 1l
= =
il

§ A

%)

(@]

Q =}
S 1l
R a1
T o
>

(]

he]

°

[ >
o 1l
5 X
n o

| | |
0.1 10.0 0.1 10.0 0.1 10.0

True Standard deviation
prior IW 4 SIW = HIWht BMMmu

Figure 3: Posterior mean of the first standard deviation (vertical axis) versus jittered true
standard deviations for the range of true correlations (columns) and sample sizes (rows)
using the four covariance matrix priors.

All other priors appear to have no difficulty in accurately estimating the standard devi-
ation.

We also assessed the posterior means for the covariance, the product of the correlation
and two standard deviations, and found no evidence of bias for any of the priors (Alvarez
2014). For the IW prior, the lack of bias here appears to be due to the marginal prior for
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the covariance, which does not have a closed form, having heavy tails.

Under these simulation conditions, we find the IW prior to have no bias in estimating
the covariance, to be biased toward large values for small variances, and to be biased toward
zero for correlations when the variance is small. Intuitively, the heavy tailed-ness in the
marginal prior for the covariance results in robust estimation for the covariance, but the lack
of prior mass near zero in the marginal prior for the variance results in an upward bias. Since
a correlation is a covariance divided by two standard deviations, the only way to reconcile
these results is to have a corresponding bias in the correlation toward zero.

4 Bird counts in the Superior National Forest

The Natural Resources Research Institute conducts a long-term monitoring program in Su-
perior National Forest to track regional avian population trends. The specific data set which
it is used in this manuscript consist of the yearly bird counts for the 10 most abundant
species from 1995 to 2013.

Table 3 provides summary statistics for the these data where total count is the actual
number of birds counted within a year and mean count is the total count divided by the
number of surveys, approximately 500 each year. The table then displays, for each species,
the average and standard deviation of these total counts and mean counts across the years.

Table 3: Summary statistics of bird count data in Superior National Forest from 1995 to
2013 for the 10 most abundant species.

Species Total count Mean count
Name Average Stand. Dev. Average Stand. Dev.
Ovenbird 1098 244 2.18 0.51
White-throated Sparrow 725 135 1.43 0.24
Nashville Warbler 722 214 1.42 0.36
Red-eyed Vireo 672 145 1.34 0.33
Chestnut-sided Warbler 432 133 0.86 0.28
Veery 293 65 0.58 0.13
Blue Jay 267 85 0.52 0.15
American Robin 225 84 0.44 0.15
Hermit Thrush 222 67 0.44 0.13
Least Flycatcher 136 35 0.27 0.06

From a scientific perspective, the choice of whether to use the total count versus the
mean count appears arbitrary when the purpose is to understand the correlation amongst
species. But, due to our simulation results, we expect here that if we choose total count
the correlation amongst the species will be well estimated. In contrast, if we choose mean
count, the correlation will be biased toward zero and the estimated standard deviation will
be biased toward larger values when using the IW prior.
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4.1 Correlation among Bird Species

We run analyses of these data assuming a multivariate normal for each year with a mean of
zero and an unknown covariance matrix. We assume the four prior distributions described in
Table 1 as well as the IW prior using the scaled data. We also perform the analysis for each
pair of species independently using a 2-dimensional normal and also simultaneously for all
species using a 10-dimensional multivariate normal. Finally, we consider using the seemingly
abitrary choice of total count and average count.

These models are estimated with same methods used for the models with simulated data,
using Stan software (Stan Development Team 2014a).

Bivariate Ten-Dimensional

e
o
~
1
uesy

Correlation posterior M

0.8-

0.6 - g
g

0.4- o
o

0.2- =

0.0-

1 1 1 1
0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8
Pearson correlation coefficient

Prior IW 4 SIW = HIWht BMMmu

Figure 4: Posterior mean of the correlation for total count (bottom row) versus average count
(top row) when performing the analysis for each pair of species independently (left column)
versus all species simultaneously (right column) for four different priors on the covariance
matrix as well as the IW prior using scaled data (IWsc).

Figure 4 presents the estimated correlations. The posterior mean for each model is plotted
against the Pearson correlation coefficient. The four panels represent each combination of
response and dimension and within each panel there are four estimates for each pair of bird
species corresponding to the five priors used.

These results match those found when using simulated data. When we model mean count,
we see each correlation estimate is shrunk towards zero, but the IW shrinkage is extreme.
However the results change if we decide to model total count. Now there is no shrinkage
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towards small correlation values and, in fact, the IW prior may be the best at recovering the
Pearson correlation coefficient.

The SIW, HIW,; and BMM,,,,, priors show similar behavior no matter which response is
used to estimate the covariance matrix, and estimating correlation with any of these priors
will lead to basically the same conclusions.

5 Summary

Simulations from the IW prior show a strong a priori dependence between the correlation
and the variances. The SIW and HIW,; priors show a similar dependence but both seem to
be more flexible than the IW prior. The BMM,,,, prior presents the most flexibility since
variances and correlations are independent by construction.

Posterior results for the IW prior show an extreme bias toward larger values for small
empirical variances and a corresponding shrinkage of the estimated correlation toward zero.
In contrast, the other three priors show only a slight bias toward zero correlations and this
is attenuated completely for larger sample sizes.

From a modeling perspective, the BMM,,, prior flexibility is appealing since we can
model correlations and variances independently and let the data define their relationship.
The BMM,,, prior is the original proposal of Barnard et al. (2000), however a separation
strategy could use a different prior for variances and correlations, e.g. a half-t for the standard
deviations and uniform for the correlations.

From a computational perspective we expect the BMM,,,, prior to be the most complex,
since all the others conserve the conjugacy properties of the IW distribution. This is espe-
cially relevant for a Gibbs sampler, where conjugacy allows for a Gibbs steps. Using Stan
or any other HMC-based approach, there is relatively little cost to using other prior such as
BMM,,,,. Computationally, the SIW prior is more efficient than HIW or BMM even when
using Stan (Alvarez 2014).

In summary, the prior choice may depend on which are the computational resources are
available. If it is possible to use a HMC sampler such as STAN, the separation strategy
proposed by Barnard et al. (2000) gives modeling flexibility and good inference properties.
Whenever we use Gibbs based samplers, e.g. JAGS or BUGS, a prior which maintains some
conjugacy might be preferable. For some Bayesian software, the IW prior may be our only
option. In this case, if our only objective is to estimate the correlation, it is possible to
pre-scale that data such that each component as an empirical variance of 1 and then proceed
with the IW prior. This appears to provide unbiased estimates of the correlations (Alvarez
2014).
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