191 research outputs found

    Line Emission from an Accretion Disk around a Black hole: Effects of Disk Structure

    Get PDF
    The observed iron K-alpha fluorescence lines in Seyfert-1 galaxies provide strong evidence for an accretion disk near a supermassive black hole as a source of the line emission. These lines serve as powerful probes for examining the structure of inner regions of accretion disks. Previous studies of line emission have considered geometrically thin disks only, where the gas moves along geodesics in the equatorial plane of a black hole. Here we extend this work to consider effects on line profiles from finite disk thickness, radial accretion flow and turbulence. We adopt the Novikov and Thorne (1973) solution, and find that within this framework, turbulent broadening is the dominant new effect. The most prominent change in the skewed, double-horned line profiles is a substantial reduction in the maximum flux at both red and blue peaks. The effect is most pronounced when the inclination angle is large, and when the accretion rate is high. Thus, the effects discussed here may be important for future detailed modeling of high quality observational data.Comment: 21 pages including 8 figures; LaTeX; ApJ format; accepted by ApJ; short results of this paper appeared before as a conference proceedings (astro-ph/9711214

    The effects of relativistic bulk motion of X-ray flares in the corona on the iron Kalpha line in Seyfert 1 galaxies

    Full text link
    We study the effects of the bulk motion of X-ray flares on the shape and equivalent width of the iron Kalpha line from an untruncated cold disk around a Kerr black hole using fully relativistic calculations. The flares are located above a cold accretion disk -- either on or off the rotation axis. For on- or off-axis flares, the upward/outward bulk motion causes a reduction of the iron Kalpha line width. To a distant observer with a low inclination angle (\theta_o \simlt 30deg.), larger upward/outward bulk velocities decrease the extension of the red wing, with little change in the location of the blue `edge'. In contrast, an observer at a large inclination angle (e.g. \theta_o=60deg.) sees both the red wing and the blue `edge' change with the bulk velocity. The equivalent width of the iron Kalpha line decreases rapidly with increasing bulk velocity of flares. However, the `narrower' line profiles observed in some objects (e.g. IC4329A and NGC4593) are difficult to produce using the out-flowing magnetic flare model with an appropriate equivalent width unless the X-ray emission is concentrated in an outer region with a radius of several tens of r_g=GM/c^2 or more. An important result is that the iron Kalpha line intensity is found to be constant even though the continuum flux varies significantly, which is true for out-flowing magnetic flares with different bulk velocities but similar intrinsic luminosities when located close to the central black hole. We find that fluctuations in the bulk velocities of out-flowing low-height flares located at the inner region (r\simlt 15r_g) can account for a constant iron Kalpha line and significant continuum variation as observered in MCG-6-30-15 and NGC5548. (Abridged)Comment: 30 pages (including 8 figures); minor changes, to appear in ApJ, Nov. 10, 200

    Nuclear obscuration in the high-ionization Seyfert 2 galaxy Tol 0109-383

    Get PDF
    We report the BeppoSAX detection of a hard X-ray excess in the X-ray spectrum of the classical high-ionization Seyfert 2 galaxy Tol0109-383. The X-ray emission of this source observed below 7 keV is dominated by reflection from both cold and ionized gas, as seen in the ASCA data. The excess hard X-ray emission is presumably due to the central source absorbed by an optically thick obscuring torus with N(H)~2e24 cm-2. The strong cold X-ray reflection, if it is produced at the inner surface of the torus, is consistent with the picture where much of the inner nucleus of Tol0109-383 is exposed to direct view, as indicated by optical and infrared properties. However, the X-ray absorption must occur at small radii in order to hide the central X-ray source but leave the optical high-ionization emission line region unobscured. This may also be the case for objects like the Seyfert 1 galaxy Mrk231.Comment: 7 pages, MNRAS in pres

    Thermal Instability and Photoionized X-ray Reflection in Accretion Disks

    Get PDF
    We study the X-ray illumination of an accretion disk. We relax the simplifying assumption of constant gas density used in most previous studies; instead we determine the density from hydrostatic balance. It is found that the thermal ionization instability prevents the illuminated gas from attaining temperatures at which the gas is unstable. In particular, the uppermost layers of the X-ray illuminated gas are found to be almost completely ionized and at the local Compton temperature (107108\sim 10^7 - 10^8 K); at larger depths, the gas temperature drops abruptly to form a thin layer with T106T\sim 10^6 K, while at yet larger depths it decreases sharply to the disk effective temperature. We find that most of the Fe Kα\alpha line emission and absorption edge are produced in the coolest, deepest layers, while the Fe atoms in the hottest, uppermost layers are generally almost fully ionized, hence making a negligible contribution to reprocessing features in 6.410\sim 6.4-10 keV energy range. We provide a summary of how X-ray reprocessing features depend on parameters of the problem. The results of our self-consistent calculations are both quantitatively and qualitatively different from those obtained using the constant density assumption. Therefore, we conclude that X-ray reflection calculations should always utilize hydrostatic balance in order to provide a reliable theoretical interpretation of observed X-ray spectra of AGN and GBHCs.Comment: Submitted to ApJ; 16 pages plus 13 figure

    Evidence for Doppler-Shifted Iron Emission Lines in Black Hole Candidate 4U 1630-47

    Get PDF
    We report the first detection of a pair of correlated emission lines in the X-ray spectrum of black hole candidate 4U 1630-47 during its 1996 outburst, based on RXTE observations of the source. At the peak plateau of the outburst, the emission lines are detected, centered mostly at \sim5.7 keV and \sim7.7 keV, respectively, while the line energies exhibit random variability \sim5%. Interestingly, the lines move in a concerted manner to keep their separation roughly constant. The lines also vary greatly in strength, but with the lower-energy line always much stronger than the higher-energy one. The measured equivalent width ranges from \sim50 eV to \sim270 eV for the former, and from insignificant detection to \sim140 eV for the latter; the two are reasonably correlated. The correlation between the lines implies a causal connection --- perhaps they share a common origin. Both lines may arise from a single KαK_{\alpha} line of highly ionized iron that is Doppler-shifted either in a Keplerian accretion disk or in a bi-polar outflow or even both. In both scenarios, a change in the line energy might simply reflect a change in the ionization state of line-emitting matter. We discuss the implication of the results and also raise some questions about such interpretations.Comment: To appear in Ap

    X-ray Signatures of an Ionized Reprocessor in the Seyfert galaxy Ton S 180

    Full text link
    We discuss the hard X-ray properties of the Seyfert galaxy Ton S 180, based upon the analysis of ASCA data. We find the X-ray flux varied by a factor ~2 on a time scale of a few thousand seconds. The source showed significantly higher amplitude of variability in the 0.5-2 keV band than in the 2-10 keV band. The continuum is adequately parameterized as a Gamma ~ 2.5 power-law across the 0.6--10 keV band . We confirm the recent discovery of an emission line of high equivalent width, due to Fe K-shell emission from highly-ionized material. These ASCA data show the Fe line profile to be broad and asymmetric and tentatively suggest it is stronger during the X-ray flares, consistent with an origin from the inner parts of an accretion disk. The X-ray spectrum is complex below 2 keV, possibly due to emission from a blend of soft X-ray lines, which would support the existence of an ionized reprocessor, most likely due to a relatively high accretion rate in this source.Comment: 24 pages, 8 figures. LaTeX with encapsulated postscript. To appear in the Astrophysical Journa

    Unveiling the broad band X-ray continuum and iron line complex in Mkr 841

    Full text link
    Mkr 841 is a bright Seyfert 1 galaxy known to harbor a strong soft excess and a variable Kα\alpha iron line. It has been observed during 3 different periods by XMM for a total cumulated exposure time of \sim108 ks. We present in this paper a broad band spectral analysis of the complete EPIC-pn data sets. We were able to test two different models for the soft excess, a relativistically blurred photoionized reflection (\r model) and a relativistically smeared ionized absorption (\a model). The continuum is modeled by a simple cut-off power law and we also add a neutral reflection. These observations reveal the extreme and puzzling spectral and temporal behaviors of the soft excess and iron line. The 0.5-3 keV soft X-ray flux decreases by a factor 3 between 2001 and 2005 and the line shape appears to be a mixture of broad and narrow components. We succeed in describing this complex broad-band 0.5-10 keV spectral variability using either \r or \a to fit the soft excess. Both models give statistically equivalent results even including simultaneous BeppoSAX data up to 200 keV. Both models are consistent with the presence of remote reflection characterized by a constant narrow component in the data. However they differ in the presence of a broad line component present in \r but not needed in \a. This study also reveals the sporadic presence of relativistically redshifted narrow iron lines.Comment: Accepted in A&A. 17 pages and 21 figure
    corecore