967 research outputs found

    Magnetohydrodynamic equilibria of a cylindrical plasma with poloidal mass flow and arbitrary cross section shape

    Full text link
    The equilibrium of a cylindrical plasma with purely poloidal mass flow and cross section of arbitrary shape is investigated within the framework of the ideal MHD theory. For the system under consideration it is shown that only incompressible flows are possible and, conscequently, the general two dimensional flow equilibrium equations reduce to a single second-order quasilinear partial differential equation for the poloidal magnetic flux function ψ\psi, in which four profile functionals of ψ\psi appear. Apart from a singularity occuring when the modulus of Mach number associated with the Alfv\'en velocity for the poloidal magnetic field is unity, this equation is always elliptic and permits the construction of several classes of analytic solutions. Specific exact equlibria for a plasma confined within a perfectly conducting circular cylindrical boundary and having i) a flat current density and ii) a peaked current density are obtained and studied.Comment: Accepted to Plasma Physics & Controlled Fusion, 14 pages, revte

    Effect of noise on coupled chaotic systems

    Get PDF
    Effect of noise in inducing order on various chaotically evolving systems is reviewed, with special emphasis on systems consisting of coupled chaotic elements. In many situations it is observed that the uncoupled elements when driven by identical noise, show synchronization phenomena where chaotic trajectories exponentially converge towards a single noisy trajectory, independent of the initial conditions. In a random neural network, with infinite range coupling, chaos is suppressed due to noise and the system evolves towards a fixed point. Spatiotemporal stochastic resonance phenomenon has been observed in a square array of coupled threshold devices where a temporal characteristic of the system resonates at a given noise strength. In a chaotically evolving coupled map lattice with logistic map as local dynamics and driven by identical noise at each site, we report that the number of structures (a structure is a group of neighbouring lattice sites for whom values of the variable follow certain predefined pattern) follow a power-law decay with the length of the structure. An interesting phenomenon, which we call stochastic coherence, is also reported in which the abundance and lifetimes of these structures show characteristic peaks at some intermediate noise strength.Comment: 21 page LaTeX file for text, 5 Postscript files for figure

    Giant Electroresistance in Edge Metal-Insulator-Metal Tunnel Junctions Induced by Ferroelectric Fringe Fields

    Get PDF
    An enormous amount of research activities has been devoted to developing new types of non-volatile memory devices as the potential replacements of current flash memory devices. Theoretical device modeling was performed to demonstrate that a huge change of tunnel resistance in an Edge Metal-Insulator-Metal (EMIM) junction of metal crossbar structure can be induced by the modulation of electric fringe field, associated with the polarization reversal of an underlying ferroelectric layer. It is demonstrated that single three-terminal EMIM/Ferroelectric structure could form an active memory cell without any additional selection devices. This new structure can open up a way of fabricating all-thin-film-based, high-density, high-speed, and low-power non-volatile memory devices that are stackable to realize 3D memory architectureope

    Heavy Quarks and Heavy Quarkonia as Tests of Thermalization

    Full text link
    We present here a brief summary of new results on heavy quarks and heavy quarkonia from the PHENIX experiment as presented at the "Quark Gluon Plasma Thermalization" Workshop in Vienna, Austria in August 2005, directly following the International Quark Matter Conference in Hungary.Comment: 8 pages, 5 figures, Quark Gluon Plasma Thermalization Workshop (Vienna August 2005) Proceeding

    Alteration of chondroitin sulfate composition on proteoglycan produced by knock-in mouse embryonic fibroblasts whose versican lacks the A subdomain

    Get PDF
    Versican/proteoglycan-mesenchymal (PG-M) is a large chondroitin sulfate (CS) proteoglycan of the extracellular matrix (ECM) that is constitutively expressed in adult tissues such as dermis and blood vessels. It serves as a structural macromolecule of the ECM, while in embryonic tissue it is transiently expressed at high levels and regulates cell adhesion, migration, proliferation, and differentiation. Knock-in mouse embryonic (Cspg2Ξ”3/Ξ”3) fibroblasts whose versican lack the A subdomain of the G1 domain exhibit low proliferation rates and acquire senescence. It was suspected that chondroitin sulfate on versican core protein would be altered when the A subdomain was disrupted, so fibroblasts were made from homozygous Cspg2Ξ”3/Ξ”3 mouse embryos to investigate the hypothesis. Analysis of the resulting versican deposition demonstrated that the total versican deposited in the Cspg2Ξ”3/Ξ”3 fibroblasts culture was approximately 50% of that of the wild type (WT), while the versican deposited in the ECM of Cspg2Ξ”3/Ξ”3 fibroblasts culture was 35% of that of the WT, demonstrating the lower capacity of mutant (Cspg2Ξ”3/Ξ”3) versican deposited in the ECM. The analysis of CS expression in the Cspg2Ξ”3/Ξ”3 fibroblasts culture compared with wild-type fibroblasts showed that the composition of the non-sulfate chondroitin sulfate isomer on the versican core protein increased in the cell layer but decreased in the culture medium. Interestingly, chondroitin sulfate E isomer was found in the culture medium. The amount of CS in the Cspg2Ξ”3/Ξ”3 cell layer of fibroblasts with mutant versican was dramatically decreased, contrasted to the amount in the culture medium, which increased. It was concluded that the disruption of the A subdomain of the versican molecule leads to lowering of the amount of versican deposited in the ECM and the alteration of the composition and content of CS on the versican molecule

    X-raying the Intergalactic OVI Absorbers

    Get PDF
    The observed intergalactic OVI absorbers at z>0 have been regarded as a significant reservoir of the ``missing baryons''. However, to fully understand how these absorbers contribute to the baryon inventory, it is crucial to determine whether the systems are collisionally ionized or photoionized (or both). Using the identified intergalactic OVI absorbers as tracers, we search for the corresponding X-ray absorption lines, which are useful for finding the missing baryons and for revealing the nature of the OVI absorbers. Stacking the Chandra grating spectra along six AGN sight lines, we obtain three spectra with signal-to-noise ratios of 32, 28, and 10 per 12.5 mA spectral bin around the expected OVII Kalpha wavelength. These spectra correspond to OVI absorbers with various dynamic properties. We find no detectable NeIX, OVII, OVIII, NVII, or CVI absorption lines in the spectra, but the high counting statistics allows us to obtain firm upper limits on the corresponding ionic column densities (in particular N(OVII)<=10 N(OVI) on average at the 95% confidence level). Jointly analyzing these non-detected X-ray lines with the averaged OVI column density, we further limit the average temperature of the OVI-bearing gas to be log[T(K)]<=5.7 in collisional ionization equilibrium. We discuss the implications of these results for physical properties of the putative warm-hot intergalactic medium and its detection in future X-ray observations.Comment: 10 pages, 6 figures, 3 tables; minor changes following referee's comments; Accepted for publication in Ap

    The nuclear receptors of Biomphalaria glabrata and Lottia gigantea: Implications for developing new model organisms

    Get PDF
    Β© 2015 Kaur et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are creditedNuclear receptors (NRs) are transcription regulators involved in an array of diverse physiological functions including key roles in endocrine and metabolic function. The aim of this study was to identify nuclear receptors in the fully sequenced genome of the gastropod snail, Biomphalaria glabrata, intermediate host for Schistosoma mansoni and compare these to known vertebrate NRs, with a view to assessing the snail's potential as a invertebrate model organism for endocrine function, both as a prospective new test organism and to elucidate the fundamental genetic and mechanistic causes of disease. For comparative purposes, the genome of a second gastropod, the owl limpet, Lottia gigantea was also investigated for nuclear receptors. Thirty-nine and thirty-three putative NRs were identified from the B. glabrata and L. gigantea genomes respectively, based on the presence of a conserved DNA-binding domain and/or ligand-binding domain. Nuclear receptor transcript expression was confirmed and sequences were subjected to a comparative phylogenetic analysis, which demonstrated that these molluscs have representatives of all the major NR subfamilies (1-6). Many of the identified NRs are conserved between vertebrates and invertebrates, however differences exist, most notably, the absence of receptors of Group 3C, which includes some of the vertebrate endocrine hormone targets. The mollusc genomes also contain NR homologues that are present in insects and nematodes but not in vertebrates, such as Group 1J (HR48/DAF12/HR96). The identification of many shared receptors between humans and molluscs indicates the potential for molluscs as model organisms; however the absence of several steroid hormone receptors indicates snail endocrine systems are fundamentally different.The National Centre for the Replacement, Refinement and Reduction of Animals in Research, Grant Ref:G0900802 to CSJ, LRN, SJ & EJR [www.nc3rs.org.uk]

    Cancer-Stromal Cell Interaction and Tumor Angiogenesis in Gastric Cancer

    Get PDF
    Recent studies in molecular and cellular biology have shown that tumor growth and metastasis are not determined by cancer cells alone but also by a variety of stromal cells. The stroma constitutes a large part of most solid tumors, and cancer-stromal cell interaction contributes functionally to tumor growth and metastasis. Angiogenesis is the result of an imbalance between positive and negative angiogenic factors released by tumor and host cells into the microenvironment of the neoplastic tissue. In gastric cancer, tumor cells and stromal cells produce various angiogenic factors, including vascular endothelial growth factor, interleukin-8, and platelet-derived endothelial cell growth factor. The microenvironment in the gastric mucosa may also influence the angiogenic phenotype of gastric cancer. Helicobacter pylori infection increases expression of several angiogenic factors by tumor cells. Activated fibroblasts and macrophages in tumor stroma also play an important role in angiogenesis and tumor progression. We review the current understanding of cancer-stromal cell interaction as it pertains to tumor angiogenesis in gastric cancer
    • …
    corecore