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ABSTRACT

The observed intergalactic O VI absorbers at z > 0 have been regarded as a significant reservoir of
the “missing baryons”. However, to fully understand how these absorbers contribute to the baryon
inventory, it is crucial to determine whether the systems are collisionally ionized or photoionized (or
both). Using the identified intergalactic O VI absorbers as tracers, we search for the corresponding
X-ray absorption lines, which are useful for finding the missing baryons and for revealing the nature of
the O VI absorbers. Stacking the Chandra grating spectra along six AGN sight lines, we obtain three
spectra with signal-to-noise ratios of 32, 28, and 10 per 12.5 mÅ spectral bin around the expected
O VII Kα wavelength. These spectra correspond to O VI absorbers with various dynamic properties.
We find no detectable Ne IX, O VII, O VIII, N VII, or C VI absorption lines in the spectra, but the
high counting statistics allows us to obtain firm upper limits on the corresponding ionic column
densities (in particular NOVII

<
∼

10 NOVI on average at the 95% confidence level). Jointly analyzing
these non-detected X-ray lines with the averaged O VI column density, we further limit the average
temperature of the O VI-bearing gas to be T <

∼
105.7 K in collisional ionization equilibrium. We discuss

the implications of these results for physical properties of the putative warm-hot intergalactic medium
and its detection in future X-ray observations.
Subject headings: Cosmology: observations — intergalactic medium — quasar: absorption lines —

X-rays: general

1. INTRODUCTION

Hydrodynamic simulations of cosmic large-scale struc-
ture indicate that, in the local universe (z <

∼
1), the

shock-heated gas in the tenuous warm-hot intergalac-
tic medium (WHIM) at temperatures T ∼ 105−7

K contains a substantial amount of baryonic matter
(Cen & Ostriker 1999; Davé et al. 2001), providing a
possible solution for the so-called “missing baryons”
problem (e.g., Persic & Salucci 1992; Fukugita et al.
1998). In a collisionally ionized gas at these tempera-
tures, the most abundant heavy elements (e.g., C, N, O,
and Ne) are in their high ionization (e.g., Li-, He-, and H-
like) states (Sutherland & Dopita 1993), whose K- and
L-shell transitions are in the X-ray and far-ultraviolet
(far-UV) wavelength bands, respectively. The existence
of the WHIM has been suggested through detections
of X-ray emission from high-density regions near galax-
ies, groups, and clusters (e.g., Wang et al. 1997, 2004;
Finoguenov et al. 2003; So ltan 2007; Mannucci et al.
2007; see also Durret et al. 2008 for a review), but these
regions are expected to contain only a small portion
of the WHIM gas. The majority is located in low-
density cosmic-web filaments (Davé et al. 2001), whose
emission is hard to detect with current X-ray and far-
UV telescopes. These filaments are most easily probed
through absorption lines imprinted on spectra of back-
ground sources.
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With the high sensitivity spectrographs aboard the
Hubble Space Telescope (HST) and the Far Ultravi-
olet Spectroscopic Explorer (FUSE), the intergalactic
O VI absorption lines (at rest-frame wavelengths 1031.93
Å and 1037.62 Å) have routinely been detected in
many background AGN spectra (e.g., Savage et al. 1998;
Tripp et al. 2000; Tripp & Savage 2000; Shull et al.
2003; Prochaska et al. 2004; Danforth & Shull 2005;
Cooksey et al. 2008). However, the nature of these
O VI absorbers is still under debate. In a survey
of the intergalactic medium (IGM) absorption lines,
Danforth & Shull (2008) found a good correlation in col-
umn density and a similar power-law slope of the column
density distribution dN/dz of O VI and N V, which are
distinct from those of H I, C III, and Si III. These fea-
tures, along with the theoretical expectations of high
post-shock temperatures and long cooling times of the
WHIM, motivated them to argue for a multiphase na-
ture of the IGM. In this picture, O VI and N V trace
the canonical WHIM at temperatures of 105−6 K, while
the low ionization ions like C II-C IV and Si II-Si IV are
predominantly photoionized. But in two other indepen-
dent surveys that include a number of common sight lines
to those used by Danforth & Shull (2008), Tripp et al.
(2008) and Thom & Chen (2008) found that 30-40%
of the O VI absorbers have velocity centroids that are
well aligned with those of the associated H I absorbers
and that some absorber temperatures inferred from the
line widths, T < 105 K, are well below that expected
in the canonical WHIM. Tripp et al. (2008) also showed
that these velocity-aligned absorbers can be naturally ex-
plained by photoionization models. These latter findings
are consistent with previous investigations along indi-
vidual sight lines based on the kinematic and chemical
properties of the high- and low-ionization absorbers (e.g.,
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Tripp & Savage 2000; Savage et al. 2002; Sembach et al.
2004; Prochaska et al. 2004; Lehner et al. 2006). How-
ever, the UV data usually do not have high enough
quality to uniquely constrain the ionization mechanism;
Tripp et al. (2008) also showed that the O VI lines could
alternatively arise in hot interface layers on the surface of
low-ionization clouds if the O VI systems are always mul-
tiphase media. Current data cannot rule out this possi-
bility, and many O VI absorbers are fully consistent with
this hypothesis (see § 4.2 in Tripp et al. 2008). So far, the
strongest indication of the collisional ionization origin of
the O VI absorbers is the detection of Ne VIII absorption
lines (at rest-frame wavelengths 770.4 Å and 780.3 Å) to-
ward HE 0226-4110 at za = 0.2070 and toward 3C 263 at
za = 0.3257 (Savage et al. 2005; Narayanan et al. 2008).
However, a systematic search toward other sight lines has
failed to find similar systems (Lehner et al. 2006).

The claimed detections of the WHIM in the X-ray band
are still controversial. In the spectrum of PKS 2155-
304 observed with the Chandra Advanced CCD Imag-
ing Spectrometer (ACIS), Fang et al. (2002) reported
an O VIII Kα absorption line at z = 0.0553, claiming
the first detection of the WHIM in the X-ray. This
detection has not been confirmed, although it can-
not be ruled out either, by the Chandra High Reso-
lution Camera (HRC) observations and the subsequent
XMM-Newton Reflection Grating Spectrometer (RGS)
observations (Cagnoni et al. 2004; Williams et al. 2007;
Fang et al. 2007). Nicastro et al. (2005) reported de-
tections of two z > 0 O VII WHIM systems in the
Chandra spectra of Mrk 421, which were not con-
firmed from the XMM-Newton RGS observations of
the same source (Kaastra et al. 2006; Rasmussen et al.
2007). Kaastra et al. (2006) also questioned the sta-
tistical significance of the Mrk 421 detections in the
Chandra spectra. The other claimed z > 0 X-ray
WHIM absorptions are mostly detected at marginal
significance (e.g., Mathur et al. 2003). Very recently,
Buote et al. (2009) have reported a 3σ detection of
O VII Kα absorption affiliated with a large-scale struc-
ture (the Sculptor Wall). The O VII and O VIII ab-
sorption lines at z ≃ 0, which may be partially due
to the WHIM in the Local Group (e.g., Nicastro et al.
2002; Fang et al. 2003), have been relatively well de-
tected, but these absorptions are severely confused by
the contributions from the Galactic hot gas close to
(or within) the Milky Way disk (Sembach et al. 2003;
Yao & Wang 2005, 2007; Wang et al. 2005; Fang et al.
2006; Bregman & Lloyd-Davies 2007; Yao et al. 2008).

With the controversial X-ray detections of the WHIM
and the debatable nature of the observed far-UV ab-
sorbers, two key questions still remain open: (1) Does
the WHIM exist? (2) If it does, what are its physical
properties?

The highly ionized X-ray absorption lines are believed
to be useful for finding the WHIM gas and for probing
the nature of the O VI absorbers. The O VII ion can
trace gas over a broad temperature range, and its col-
umn density is expected to be >

∼
10 times higher than

that of O VI in a shock-heated gas with shock temper-
atures T >

∼
105.7 K (for overdensity δ ∼ 10 − 100; e.g.,

Furlanetto et al. 2005). Moreover, cosmological simula-
tions predict that hot O VI absorbers should have compa-
rably strong (or even stronger) affiliated O VII absorption

lines (see, e.g., Figures 8-10 in Cen & Fang 2006 and
Figure 14 in Chen et al. 2003). However, because of the
limited sensitivity and spectral resolution of the current
X-ray observatories like Chandra and XMM-Newton,
searching for X-ray lines in the WHIM is currently a diffi-
cult task. For instance, the column densities of the X-ray
absorbing ions, even for the most promising one (O VII),
are expected to be small with NOVII ≈ 1015 cm−2 (e.g.,
Chen et al. 2003). For the most part, the background
AGN are also relatively faint in the X-ray band. Con-
sequently, very long exposures (see § 5) are required to
collect enough photons to conduct a blind search for X-
ray absorption lines from the WHIM along a random line
of sight. These difficulties contribute to the controversies
and frustrations surrounding the reported X-ray detec-
tions.

In this work, we search for the X-ray absorption lines
of O VII, as well as O VIII, Ne IX, N VII, and C VI, by ex-
tensively exploring the archived Chandra grating obser-
vations. We use the identified O VI absorbers as tracers
to avoid uncertainties of a blind search. We also develop
a technique to stack all the applicable X-ray observations
and obtain spectra with unprecedented counting statis-
tics.

The paper is organized as follows. In § 2, we list the
identified O VI absorbers and the corresponding Chandra
observations utilized in this work, and describe the data
reduction process. In § 3, we present our search method
and stack the X-ray observations in the rest frame of the
observed O VI absorbers. We search for the X-ray ab-
sorption lines in the stacked spectra, present the results
of the data analysis in § 4, and discuss the implications
of our results in § 5.

2. O VI ABSORBERS, CHANDRA OBSERVATIONS, AND
DATA REDUCTION

There are ∼ 80 identified IGM O VI systems at red-
shifts of 0 < zabs < 0.5 toward ∼ 30 AGN sight lines
(Savage et al. 2002; Sembach et al. 2004; Danforth et al.
2006; Danforth & Shull 2005, 2008; Tripp et al. 2008;
Thom & Chen 2008). Chandra has observed 12 of
these AGN with high spectral resolution grating instru-
ments. To avoid the potential confusion caused by the
absorbers intrinsic to the AGN in identifying the IGM
O VI systems and in searching for X-ray lines, we do
not use the five AGN (Mrk 279, NGC 5548, Mrk 509,
Ark 564, and NGC 7469) toward which warm absorbers
have been detected in the X-ray band (e.g., Scott et al.
2004, 2005; Kaastra et al. 2002; Yaqoob et al. 2003;
Matsumoto et al. 2004). Chandra observations of the
five AGN could contribute an additional < 10% in total
to the spectral counts of our final spectra (see below),
so excluding them in the data analysis does not signifi-
cantly affect our results. To avoid the confusion caused
by possible absorber misidentification or noise features,
we only used the O VI systems that were detected at > 3σ
significance levels. We further excluded the proximate
absorbers that are within ∼ 2, 000 km s−1 to the AGN
redshifts; Tripp et al. (2008) have shown that the major-
ity of the proximate O VI systems are found within this
velocity interval at low redshifts. The proximate systems
can be high-velocity AGN ejecta and/or can be located
near the central engine of the AGN. Consequently, these
systems should be excluded when searching for WHIM
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absorbers.
Table 1 summarizes our O VI absorber sample, includ-

ing the redshifts of the O VI systems (zOVI), λ1031.93
equivalent widths, dispersion velocities (b), and col-
umn densities (NOVI) along the six sight lines used
in this work. For those absorbers at very close red-
shifts along a single sight line that cannot be distin-
guished with the Chandra resolution, only the systems
with higher EWs were used. Galaxy surveys at low
z show that most of these O VI absorbers are usu-
ally found within several hundred kpc of intervening
galaxies along the sight lines (Tripp & Savage 2000;
Savage et al. 2002; Shull et al. 2003; Sembach et al.
2004; Tumlinson et al. 2005; Prochaska et al. 2006;
Stocke et al. 2006; Tripp et al. 2006; Cooksey et al.
2008). The investigation of the connection between
galaxy environment and X-ray absorbers is underway
and will be presented in a separate paper. In this work,
we focus on searching for corresponding X-ray absorption
of the O VI-bearing gas.

We follow the criteria used in Tripp et al. (2008) to
classify the O VI absorbers along the six AGN sight lines
into simple and complex systems. In simple systems, the
velocity centroids of H I and O VI are well aligned (within
2σ of their velocity uncertainties). In complex absorbers,
these velocity centroids are well separated (> 2σ apart)
and/or there are multiple low- and high-ionization stages
(e.g., C II-C IV, Si II-Si III, or N V, in addition to O VI)
that indicate the presence of multiple ionization phases.
We also classify the O VI absorbers with equivalent width
(EW) > 80 mÅ as strong systems (e.g., Fang & Bryan
2001). Tripp et al. (2008) classified the O VI absorbers
along three of the six sight lines. Using these crite-
ria, we classified all the O VI absorbers reported by
Danforth et al. (2006) and Danforth & Shull (2008) to-
ward the other three sight lines. Figure 1 presents exam-
ples of each classified system.

As of 2008 May 6, there were ∼ 100 archived Chan-
dra grating observations of the six selected targets. In
this work, we did not use non-standard observations with
uncertain calibrations. We also excluded several short
observations (with an individual exposure <

∼
10 ks) of

PKS 2155-304 that contribute < 5% to the total spectral
counts of the source. Table 2 summarizes the number of
observations and the total exposure used in this work.

For ACIS grating observations, we followed the proce-
dures described in Yao & Wang (2005, 2007) to calibrate
the data, extract spectra, and calculate correspond-
ing response functions (RSPs). The same energy grid
was applied throughout these procedures. We utilized
the medium energy grating (MEG) spectra of the High
Energy Transmission Grating (HETG; Canizares et al.
2005) observations and only used the first grating order
spectra of all observations.

For each HRC grating observation, we followed the
steps presented in Wang et al. (2005) to obtain the first
order RSP (FRSP) and order-overlapped RSP (ORSP)
and spectra. We then extracted the first order spectra by
subtracting the difference of the best-fit-model predicted
channel counts between the ORSP and the FRSP from
the order-overlapped spectra.

Spectra from positive and negative grating arms of
each observation were then co-added, and multiple ob-
servations toward a single sight line were further stacked

to enhance the counting statistics. Visual inspection re-
vealed no significant and consistent Kα lines of O VII,
O VIII, Ne IX, N VII, or C VI at the corresponding red-
shift zOVI along individual sight lines. Figure 2 shows
parts of the final spectra of the six AGN around the ex-
pected IGM O VII Kα lines.

Spectra along the PKS 2155–304 sight line deserve to
be mentioned particularly because of their excellent spec-
tral quality (Fig. 2). Toward this sight line, Shull et al.
(2003) detected two O VI absorption systems at red-
shifts z = 0.054 and 0.057, associated with a cluster of
seven H I absorbers and a group of galaxies (Shull et al.
1998). Figure 3 shows the detected O VI and other non-
detected metal absorption lines along with the cluster
of H I lines. On the Chandra ACIS-grating spectrum,
the claimed z = 0.0553 O VIII line at λobs = 20.02 Å is
clearly visible with an EW of 5.9(3.1, 8.6) mÅ (90% con-
fidence range), which is consistent with that reported by
Fang et al. (2002, 2007). There is no other X-ray line at
this redshift. The discrepancy between the HRC-grating,
the XMM-Newton RGS (with an accumulated exposure
time of 980 ks), and the ACIS-grating spectra still exists;
the former two spectra yield upper limits of EW < 3.2
mÅ and < 3.7 mÅ, respectively (see also § 1 and ref-
erences therein). The line in the co-added HRC+ACIS
spectrum is severely diluted with EW < 4.2 mÅ.

3. AN EFFECTIVE STACKING AND SEARCHING
STRATEGY

To facilitate an effective search for X-ray IGM absorp-
tion lines, we first blueshifted the X-ray spectral data
by the observed O VI absorber redshifts zOVI and recon-
structed the corresponding RSPs accordingly. The data
are originally in forms of detected counts distributed in
a wavelength grid that was chosen to be the same for
all the X-ray spectra. The rest-frame wavelength λ0 is
related to the observed wavelength λobs by

λ0 = λobs/(1 + zOVI). (1)

For each absorber, we first use this relationship to re-
calculate the grid boundaries of the corresponding X-ray
spectrum and then cast the spectrum and the RSP onto
a rest-frame spectral grid, which is chosen to be the orig-
inal one. The re-calculated spectrum, both shifted and
compressed, generally no longer matches this chosen rest-
frame grid. Therefore, some of the re-calculated spectral
bins fall completely within individual rest-frame grid in-
tervals, whereas others enclose a grid boundary. In this
latter case, we split the counts in such a bin into two parts
and assign them to the two grid intervals adjacent to the
enclosed boundary; the weights used in the splitting are
proportional to the wavelength overlaps of the bin with
the two intervals. In the same way, we re-calculate the
wavelength boundaries and the distribution probability
in the corresponding RSP file. We repeat this procedure
for all the absorbers to obtain their respective rest-frame
spectral and RSP files; for individual sight lines with n
intervening O VI systems (Table 1), we obtained n shifted
spectra and RSPs.

To enhance the counting statistics, we co-added these
shifted spectra to form a single stacked spectrum and
RSP. We constructed three different stacked spectra
based on the various O VI absorber classifications (§2).
Figure 4 illustrates the stacked spectrum that contains
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TABLE 1

Properties of the identified O VI absorbers

EW b

Source Name zAGN zOVI (mÅ) (km s−1) log[NOVI(cm−2)] Classb

H1821+643 0.2970 0.0244 27 ± 8 21+9
−6 13.44 ± 0.1 Sm

0.1214 97 ± 14 76+13
−11 13.97 ± 0.06 Cm, St

0.2133 39 ± 9 28 ± 5 13.54 ± 0.06 Cm
0.2250a 190 ± 10 45 ± 2 14.27 ± 0.02 Cm, St
0.2264a 32 ± 4 16 ± 2 13.51 ± 0.04 Cm
0.2453 51 ± 7 26 ± 2 13.71 ± 0.03 Sm
0.2666 45 ± 7 25 ± 3 13.63 ± 0.04 Sm

3C 273 0.1583 0.0033 31 ± 7 51+11
−9 13.44 ± 0.07 Cm

0.0902 16 ± 3 22 ± 6 13.18 ± 0.06 Cm
0.1200 24 ± 3 8 ± 3 13.37 ± 0.04 Sm

PG 1116+215 0.1765 0.0593 63 ± 9 36+11
−8 13.52 ± 0.08 Sm

0.1385 83 ± 16 36 ± 7 13.97 ± 0.06 Cm, St
0.1655 111 ± 9 32+21

−13 14.08 ± 0.04 Cm, St
PKS 2155-304 0.1165 0.0540a 32 ± 5 14 ± 6 13.63 ± 0.12 Cm

0.0572a 44 ± 11 24 ± 7 13.57 ± 0.09 Cm
Ton S180 0.0620 0.0456 62 ± 14 20 13.74 ± 0.06 Sm

PG 1211+143 0.0809 0.0511 187 53+10
−9 14.21 ± 0.08 Cm, St

0.0645a 144 ± 32 54 ± 11 14.16 ± 0.08 Cm, St
0.0649a 55 ± 10 21 13.83 ± 0.11 Cm

averagedc 45.4 28 13.62 All
averagedd 49.0 32 13.65 Cm
averagede 131.7 59 14.11 St

Note. — Errors are listed in 1σ range. The values of the first three sources
(H1821+643, 3C 273, and PG1116+215) are adopted from Tripp et al. (2008), and the
remaining values are adopted from Danforth & Shull (2008) except for those at the red-
shift 0.0511 along the PG 1211+143 sight line, which are adopted from Tumlinson et al.
(2005). a Toward an individual sight line, these absorbers cannot be distinguished with
Chandra resolution, and the system with higher equivalent width of O VI is used. b

Classification of the O VI absorbers; “Cm”, “Sm”, and “St” denote complex, simple,
and strong O VI systems, respectively. c,d,e Values are weight averaged with respect to
the spectral counts at the O VII Kα wavelength (21.602 Å) in the shifted spectra for all,
complex, and strong O VI absorbers, respectively (§ 4).

Fig. 1.— From left to right, examples of the simple, complex, and strong O VI absorbers and the corresponding Lyα systems, along
the 3C 273, H1821+643, and PG 1211+143 sight lines (Tripp et al. 2008; Danforth & Shull 2008), respectively. Absorbers that are not
associated with the labeled systems are marked with “X”.
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Fig. 2.— Chandra spectra of the six sources around the O VII Kα line and the best-fit continuua. The vertical dotted lines mark the
Galactic O VII, O I, and O II Kα lines at 21.602, 23.508, and 23.348 Å, respectively. The thick dashed lines mark the expected positions
of the intergalactic O VII Kα lines at the corresponding zOVI (Table 1). The bin size is 12.5 mÅ.
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Fig. 3.— Metal absorption lines associated with a cluster of H I Lyα lines detected in the PKS 2155-304 spectrum, plotted vs. velocity
with v = 0 km s−1 at zabs = 0.0542. Both lines of the O VI doublet are clearly detected at zabs = 0.0542 and are marked. Only the O VI
λ1031.93 transition is detected at zabs = 0.0572, but the weaker O VI λ1037.62 line is blended with a strong Galactic Fe II transition.

TABLE 2

Chandra grating observations of
the selected targets

#. obs. Exp.
Src. Name zAGN (LETG) (ks)

H1821+643 0.297 5 600
3C 273 0.158 16 360
PG 1116+215 0.176 1 89
PKS 2155-304 0.117 36 760
Ton S180 0.062 1 80
PG 1211+143 0.081 3 141
sub total: 62 2030

all of the shifted spectra corresponding to the 16 O VI

systems used in this work (Table 1) regardless of their
classification. Figure 5 presents the stacked spectrum
for only the complex O VI systems, and Figure 6 is the
stacked spectrum for only the strong O VI systems (Ta-
ble 1). To avoid any potential bias in our results caused
by the large contribution of the PKS 2155-304 sight line
in the stacked spectra (Fig. 2) and by its peculiarity in
detecting only the O VIII line (§ 1), we also obtained two
similar stacked spectra and RSPs like those presented in
Figures 4 and 5, but without the PKS 2155-304 contri-
bution. For the same reasons, we also report two sets
of results in the following sections when applicable, with
and without the contribution of PKS 2155-304. It is in-
teresting to point out that, because of the poor spectral
resolution of the X-ray instruments, absorbers at very
close redshifts/velocities along a single sight line that
cannot be distinguished with the Chandra LETG resolu-

tion (∼ 750 km s−1) are automatically stacked/merged
as one velocity component.

Because each spectrum has been shifted by the corre-
sponding zOVI before being stacked, the X-ray IGM Kα
absorption lines of Ne IX, O VIII, O VII, N VII, and C VI,
if they are associated with the O VI-bearing gas, are ex-
pected to be at rest-frame wavelengths of 13.448, 18.967,
21.602, 24.781, and 33.736 Å, respectively, in the stacked
spectra.

4. ANALYSIS AND RESULTS

We now search for and measure the X-ray absorption
lines in the stacked spectra. There are no extragalactic
O VII, O VIII, Ne IX, N VII, or C VI absorption lines ap-
parent in any of the stacked spectra (Figs. 4–6). Adding
Gaussian profiles at the corresponding rest-frame wave-
lengths, we obtain upper limits to EWs of these lines.
To obtain column densities of these ions, we first calcu-
late the mean dispersion velocity (b) and column density
NOVI of different classified O VI systems (Table 1) by
weighting them with respect to the spectral counts at
the wavelengths of the expected O VII Kα lines (Fig. 2).
Replacing the Gaussian profiles with the absorption line
model absline 4 (Yao & Wang 2005) and fixing the b of

different ions to b, we then estimate the column density
upper limits of these ions as reported in Table 3.

With these upper limits to the ionic column densities

4 In modeling a single absorption line, this model is similar to
the curve-of-growth analysis. But it can be used to jointly ana-
lyze multiple absorption lines at the same time. For a detailed
description of the model, see Yao & Wang (2005).
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O VII Kα O VII Kα

O VII Kβ

O VII Kβ O VIII Kα
O VIII Kα

Ne IX K

Fig. 4.— Four ranges of the final stacked spectrum that includes shifted spectra corresponding to all 16 O VI systems (Table 1).
The thick lines mark the best-fit continuum, the red lines and text mark the blue-shifted Galactic absorptions (mainly contributed from
PKS 2155–304 and 3C 273 sight lines), and blue vertical lines mark the positions of the expected intergalactic neon, oxygen, nitrogen, and
carbon absorption lines at the corresponding rest-frame wavelengths. The bin-size is 12.5 mÅ.

α

C VI K α

O VII Kα

Ne IX K α

O I K α
O II Kα

α

N VII K

O VII Kα O VII Kα

O VII Kβ

O VII Kβ O VIII Kα
O VIII Kα

Ne IX K

Fig. 5.— Same as Figure 4, except that stacked spectrum contains only spectra corresponding to the complex O VI systems (Table 1).

TABLE 3

The 95% confidence upper limits of Kα absorption lines

line Ne IX O VIII O VII N VII C VI

λ (Å) 13.448 18.967 21.602 24.781 33.736

EW (mÅ)a 1.0(1.5) 2.2(2.6) 1.1(2.6) 1.2(2.0) 3.6(8.1)
log[N(cm−2)]a 15.04(15.29) 15.51(15.57) 14.62(15.12) 14.85(15.06) 15.06(15.71)

EW (mÅ)b 1.5(3.0) 2.3(3.0) 1.4(2.9) 1.3(3.0) 4.4(8.2)
log[N(cm−2)]b 15.28(15.71) 15.53(15.62) 14.75(15.15) 14.90(15.21) 15.15 (15.76)

EW (mÅ)c 3.8 3.1 3.95 4.3 8.0
log[N(cm−2)]c 15.75 15.63 15.19 15.33 15.36

Note. — Superscripts a, b, and c denote the upper limits obtained from stacked X-
ray spectra corresponding to all, complex, and strong O VI absorbers, respectively. Values
in parenthesis indicate limits constrained from the spectra without contribution from the
PKS 2155-304 sight line.
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α

Ne IX K α

O VII Kβ

N VII K

α O VII Kα

C VI K α

O VIII K

Fig. 6.— Same as Figure 4, except that stacked spectrum contains only spectra corresponding to the strong O VI systems (Table 1).
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and calculated NOVI, we can probe thermal properties
of the O VI-bearing gas. For a gas in collisional ioniza-
tion equilibrium (CIE), the column density ratio between
O VII and O VI provides a diagnostic of gas temperature
(Sutherland & Dopita 1993; Yao & Wang 2005). As-
suming a single gas temperature, we jointly analyze the
non-detected O VII with the NOVI (Tables 1 and 3), and
obtain a temperature upper limit of log[T (K)] < 5.7 at
the 95% confidence level from the three spectra corre-
sponding to all, complex, and strong O VI absorbers. In-
cluding the non-detected lines of Ne IX, N VII, and C VI

in the joint analysis (assuming relative solar abundances
of Ne/O, N/O and C/O; Anders & Grevesse 1989) does
not further constrain the temperature. From the spec-
trum without the contribution of PKS 2155–304, we ob-
tain the same upper limit. The reason why these spec-
tra yield nearly the same temperature upper limit is the
tightly constrained ratio of NOVII/NOVI from the various
spectra from <

∼
10 to <

∼
35 (see Tables 1 and 3), compared

to 8.9, 26.2, and 63.1 for log[T (K)] = 5.6, 5.7, and 5.8,
respectively, for gas in CIE (see Sutherland & Dopita
1993 and Fig. 6 in Tripp et al. 2001).

5. DISCUSSION

We have presented a search for X-ray absorption lines
produced in the WHIM by using the identified far-UV
O VI absorbers as tracers for stacking the archived Chan-
dra observations. The three final stacked spectra, cor-
responding to all, complex, and strong O VI absorbers,
have signal-to-noise ratios of ∼ 32, 28, and 10, respec-
tively, per 12.5 mÅ spectral bin around the O VII Kα
wavelength. There are no detectable X-ray absorption
lines at the expected wavelengths in these spectra. We
have obtained upper limits to EWs of the Kα lines of
O VII, O VIII, Ne IX, N VII, and C VI and their column
densities. Combining these non-detected lines with the
average O VI column density, we have also derived an
upper limit to the temperature of the O VI-bearing gas.

The X-ray measurements of the O VI systems with
different physical properties in principle can reveal the
ionization mechanism of the intervening gas. While
most observed O VI absorbers could arise in inter-
faces between the low- and high-ionization phases (e.g.,
Danforth & Shull 2008; Tripp et al. 2008), compared to
the velocity well-aligned simple O VI absorbers, the dy-
namically complex O VI systems provide more direct ev-
idence for the multiphase nature of the absorbers (e.g.,
Tripp et al. 2001, 2008; Shull et al. 2003; Sembach et al.
2004; Savage et al. 2005). Cosmological simulations of
large-structure formation also predict that the O VI sys-
tems with larger equivalent widths are more likely to
be collisionally ionized (Cen et al. 2001; Fang & Bryan
2001). If the O VI absorbers utilized in this work are in-
deed multiphase and trace the shock-heated IGM, the hot
O VII-bearing gas is expected to be either surrounding the
cool absorbers (traced by the absorption lines of Lyα,
C II, Si II, etc.) or itself containing the observed O VI

or a combination of both. The column densities of O VII

(and/or O VIII) are expected to be at least an order of
magnitude more than that of O VI. But the current X-ray
observations only constrain the NOVII/NOVI

<
∼

10 on av-
erage (Tables 1 and 3), which does not strongly favor the
collisional ionization scenario of the O VI absorbers for
shock temperatures T > 105.7 K (Furlanetto et al. 2005).

However, these data still cannot rule out the photoion-
ization scenario, in which NOVII/NOVI is expected to be
<
∼

3 (see Fig. 6 in Tripp et al. 2001 and Furlanetto et al.
2005).

There are several possibilities or their combinations
that may cause the non-detections of the X-ray lines:

1. Some of the O VI systems may be photoionized
or partly photoionized. The purely photoionized sys-
tems may not contribute to the baryon inventory (§ 1)
since they could have already been counted through
Lyα absorbers. Since the density of the IGM is very
low, photoionization could play an important role in
producing the highly ionized oxygen species (especially
O VI

5) in the WHIM besides the gravitational shocks
(e.g., Chen et al. 2003; Tripp et al. 2008). In this case,
the NOVII/NOVI is expected to be lower than that in a
solely collisionally ionized gas. Simulations show that,
while the EWs of O VI and O VII are fairly well cor-
related in the putative WHIM in a broad overdensity
range (δ ∼ 10 − 100), for the O VI-absorbers with
EW (O VI)> 34 mÅ, there are <

∼
20% of the associated

O VII-absorbers with EW (O VII)> 2 mÅ (see Figs. 13-15
in Chen et al. 2003 and Table 3).

2. Thermal properties of the WHIM may vary among
different systems and sight lines. The O VII and/or O VIII

absorptions are expected to be strong in some systems
and weak in others, but the “strong” X-ray absorption
signals that originate from the shock-heated gas could
have been diluted in the stacked spectra.

3. The characteristic temperature of the hot gas may
be too high (e.g., T > 3 × 106 K, as observed in the
intragroup and intracluster medium) to produce observ-
able O VII or O VIII. In this case, the interface between
hot and cool IGM could still be present to be respon-
sible for the observed O VI absorbers, but the average
temperature upper limit (log[T (K)] < 5.7) derived from
the ratio of NOVII/NOVI (§ 4) only applies to the vicinity
of the O VI-bearing gas. This may be the case for the
z = 0.0553 absorber along the PKS 2155-304 sight line
where the O VIII line was detected but the O VII was not
(§ 1 and references therein).

4. Lastly, the O VI absorbers might only trace the
warm part of the WHIM at temperatures T <

∼
3× 105 K,

and the hot (T ∼ 106 K) IGM is not necessarily always
co-located with the warm gas. If this is the case, because
of the small ionization fraction of O VI at high tempera-
tures, the O VI absorption lines produced in the hot gas
might not have been detected along most of the sight
lines. The possible large dispersion velocity of the hot
gas could also make the O VI absorption feature shal-
lower and harder to detect. The high sensitivity of the
Cosmic Origins Spectrograph, which is scheduled to be
installed on HST in spring 2009, will provide a great
opportunity to search for such weak O VI absorbers (at
z > 0.12) and to examine this possibility.

The results obtained in this work also have impor-
tant implications regarding future observations of the
WHIM with the current and the future X-ray observa-
tories. With the still limited spectral resolution [even

5 Higher ionization stages are harder to produce by photoioniza-
tion, but we note that Hellsten et al. (1998) have argued that in
the IGM, even O VII and O VIII are predominantly photoionized
by the X-ray background.
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in the proposed International X-ray observatory (IXO),
E/∆E ∼ 3, 000, which is still ∼ 10 − 15 times less than
those of current far-UV instruments], it will be chal-
lenging to conduct a blind search for the X-ray absorp-
tion line “forest” produced in the WHIM. A more effec-
tive strategy is still to use the identified O VI and/or
Lyα absorbers as references, as implemented in this
work (also see Chen et al. 2003; Danforth & Shull 2005,
2008). However, if the six sight lines (Table 1) used in
this work fairly sample the WHIM filaments over the
whole sky, the gas only contains <

∼
1015 cm−2 of O VII

in column density and the O VII Kα EW <
∼

2.5 mÅ
in absorption on average (Table 3). To detect a weak
line with EW∼ 2 mÅ in an AGN spectrum with a flux
of 4 × 10−12 ergs s−1 cm−2 keV−1 around the line cen-
troid, our 1,000-run simulations for an exposure of 50
Ms with the Chandra ACIS-LETG only yield 375 detec-
tions at EW/∆EW >

∼
3σ significance level. In compari-

son, for the IXO with E/∆E ∼ 3, 000 and effective area

of ∼ 3, 000 cm2, our simulations indicate that a 100 ks
observation will have a 90% probability of detecting such
a weak line at >

∼
3.5σ significance level.
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non-detection of X-ray absorption lines. This work was
made possible by Chandra archival research grant AR7-
8014. Additional support for this research was provided
by NASA grant NNX08AC14G, provided to the Univer-
sity of Colorado to support data analysis and scientific
discoveries related to the Cosmic Origins Spectrograph
on the Hubble Space Telescope, and partly through the
Smithsonian Astrophysical Observatory contract SV3-
73016 to MIT for support of the Chandra X-Ray Cen-
ter under contract NAS 08-03060. TMT and LS also
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