Effect of noise in inducing order on various chaotically evolving systems is
reviewed, with special emphasis on systems consisting of coupled chaotic
elements. In many situations it is observed that the uncoupled elements when
driven by identical noise, show synchronization phenomena where chaotic
trajectories exponentially converge towards a single noisy trajectory,
independent of the initial conditions. In a random neural network, with
infinite range coupling, chaos is suppressed due to noise and the system
evolves towards a fixed point. Spatiotemporal stochastic resonance phenomenon
has been observed in a square array of coupled threshold devices where a
temporal characteristic of the system resonates at a given noise strength. In a
chaotically evolving coupled map lattice with logistic map as local dynamics
and driven by identical noise at each site, we report that the number of
structures (a structure is a group of neighbouring lattice sites for whom
values of the variable follow certain predefined pattern) follow a power-law
decay with the length of the structure. An interesting phenomenon, which we
call stochastic coherence, is also reported in which the abundance and
lifetimes of these structures show characteristic peaks at some intermediate
noise strength.Comment: 21 page LaTeX file for text, 5 Postscript files for figure