37 research outputs found

    Local, Regional, and Remote Seismo‐Acoustic Observations of the April 2015 VEI 4 Eruption of Calbuco Volcano, Chile

    Get PDF
    The two major explosive phases of the 22–23 April 2015 eruption of Calbuco volcano, Chile, produced powerful seismicity and infrasound. The eruption was recorded on seismo-acoustic stations out to 1,540 km and on five stations (IS02, IS08, IS09, IS27, and IS49) of the International Monitoring System (IMS) infrasound network at distances from 1,525 to 5,122 km. The remote IMS infrasound stations provide an accurate explosion chronology consistent with the regional and local seismo-acoustic data and with previous studies of lightning and plume observations. We use the IMS network to detect and locate the eruption signals using a brute-force, grid-search, cross-bearings approach. After incorporating azimuth deviation corrections from stratospheric crosswinds using 3-D ray tracing, the estimated source location is 172 km from true. This case study highlights the significant capability of the IMS infrasound network to provide automated detection, characterization, and timing estimates of global explosive volcanic activity. Augmenting the IMS with regional seismo-acoustic networks will dramatically enhance volcanic signal detection, reduce latency, and improve discrimination capability

    Updated Global Reference Models of Broadband Coherent Infrasound Signals for Atmospheric Studies and Civilian Applications

    No full text
    Abstract The International Monitoring System (IMS) infrasound network has been established to detect nuclear explosions and other signals of interest embedded in the station‐specific ambient noise. The ambient noise can be separated into coherent infrasound (e.g., real infrasonic signals) and incoherent noise (such as that caused by wind turbulence). Previous work statistically and systematically characterized coherent infrasound recorded by the IMS. This paper expands on this analysis of the coherent ambient infrasound by including updated IMS data sets with data up to the end of 2020 for all 53 of the currently certified IMS infrasound stations using an updated configuration of the Progressive Multi‐Channel Correlation (PMCC) method. This paper presents monthly station‐dependent reference curves for the back azimuth, trace velocity, and root mean squared amplitude, which provides a means to determine the deviation from the nominal monthly behavior. In addition, a daily Ambient Noise Stationarity (ANS) factor based on deviations from the reference curves is determined for a quick reference to the coherent signal quality compared to the nominal situations. Newly presented histograms provide a higher resolution spectrum, including the observations of the microbarom peak, as well as additional peaks reflecting station‐dependent environmental noise. The aim of these reference curves is to identify periods of suboptimal operation (e.g., nonoperational sensor) or instances of strong abnormal signals of interest
    corecore