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Abstract The two major explosive phases of the 22–23 April 2015 eruption of Calbuco volcano, Chile,
produced powerful seismicity and infrasound. The eruption was recorded on seismo-acoustic stations out
to 1,540 km and on five stations (IS02, IS08, IS09, IS27, and IS49) of the International Monitoring System (IMS)
infrasound network at distances from 1,525 to 5,122 km. The remote IMS infrasound stations provide an
accurate explosion chronology consistent with the regional and local seismo-acoustic data and with previous
studies of lightning and plume observations. We use the IMS network to detect and locate the eruption
signals using a brute-force, grid-search, cross-bearings approach. After incorporating azimuth deviation
corrections from stratospheric crosswinds using 3-D ray tracing, the estimated source location is 172 km from
true. This case study highlights the significant capability of the IMS infrasound network to provide automated
detection, characterization, and timing estimates of global explosive volcanic activity. Augmenting the
IMS with regional seismo-acoustic networks will dramatically enhance volcanic signal detection, reduce
latency, and improve discrimination capability.

1. Introduction

Calbuco volcano, Chile (41.3300°S, 72.6183°W), erupted explosively in April 2015 in two subplinian phases
(plume heights >15 km, VEI 4) following relatively modest precursory activity (Castruccio et al., 2016;
Romero et al., 2016; Valderrama et al., 2015, 2016; Van Eaton et al., 2016). A minor increase in volcano-
tectonic (VT) events (local magnitudes <2, ~5 events per day) was detected on local and regional seismic
stations in the 3 months preceding the eruption (i.e., from February 2015); these events were located
between the crater of the volcano and 6 km to the west, with depths of 5–9 km (Valderrama et al.,
2015). We nominally define recording distances as local: <15 km, regional: 15–250 km, and remote:
>250 km (Fee & Matoza, 2013). A significant, rapid, escalation in shallow seismicity (VT and long-period,
LP, including events classified by Observatorio Volcanológico de los Andes del Sur (OVDAS) as “hybrid”
based on frequency content and waveform) occurred in the 3–4 h prior to the first explosive phase
(Figure 1) (Castruccio et al., 2016; Valderrama et al., 2016, 2015). This preeruptive seismicity sequence
included a local magnitude ML 3.8 event located to the west of Calbuco at 6.3 km depth (OVDAS solution),
approximately ~20 min before the eruption (Figure 1) (Valderrama et al., 2015, 2016). Van Eaton et al.
(2016) provide a chronology of the eruption combining data from a local seismic station (station PES
~5.4 km distance from the crater), satellite-derived umbrella cloud expansion estimates, lightning map-
ping, and characteristics of the fall deposits. The two major subplinian explosive phases are estimated
to have begun at 21:04 22 April 2015 (duration ~1 h:30 m) and 04:00 23 April 2015 (duration
~6 h:15 m) (Van Eaton et al., 2016) (we report all times in UT and all plume heights referenced to above
sea level). These explosive phases were characterized by ash columns extending into the stratosphere,
with a maximum plume height of 23 km (Vidal et al., 2015) and pyroclastic density currents reaching
6 km from the vent (Castruccio et al., 2016). These events resulted in the evacuation of over 6,500 people
from nearby communities and impacted infrastructure, agriculture, and aviation. The two major eruptive
phases were also detected using ionospheric total electron content perturbations on ground-based
Global Navigation Satellite System receivers in southern Chile, interpreted as a consequence of acoustic
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shocks that propagated to ionospheric altitudes (Shults et al., 2016). A third smaller (likely phreatic) explo-
sive eruption occurred at 16:08 30 April 2015 (plume height <4.5 km) (Van Eaton et al., 2016); the third
event did not produce large enough signals to be recorded beyond local distances. Here we focus on
using remote infrasound signals to locate and characterize the two major explosive eruption events on
22–23 April 2015.

Previous work has demonstrated that remote infrasound arrays can be used to detect, locate, and pro-
vide detailed chronologies of remote explosive volcanism, with the potential to provide source para-
meters for ash transport and dispersal models (e.g., Caudron et al., 2015; Dabrowa et al., 2011; Fee,
Steffke, & Garces, 2010; Green et al., 2013; Matoza, Le Pichon, et al., 2011; Matoza, Vergoz, et al.,
2011). Regional volcano-acoustic monitoring and early warning systems are being investigated and
implemented (De Angelis et al., 2012; Garces et al., 2008; Fee, Garces, & Steffke, 2010; Kamo et al.,
1994; Matoza et al., 2007; Ulivieri et al., 2013). More recent work has explored the potential of the
International Monitoring System (IMS) infrasound network to provide a quantitative catalog of global
explosive volcanic activity (Matoza et al., 2017) and automated eruption notifications to Volcanic Ash
Advisory Centers (Mialle et al., 2015). The well-documented 22–23 April 2015 eruptive sequence of
Calbuco represents a unique opportunity to test and evaluate remote infrasonic detection, location,
and characterization capabilities. We evaluate the ability of remote IMS infrasound stations to (1) detect
volcanic eruption signals in the presence of wind noise and interfering infrasound signals, (2) provide fast
and reliable location solutions using automated procedures, and (3) provide constraints on the timing
(origin time and duration) of explosive eruptive activity. The availability of local seismic, regional
seismo-acoustic, and remote acoustic data makes this a useful case study for this purpose. In addition,
the April 2015 eruption of Calbuco represents a rare case of a large ground-truth infrasound event in the
Southern Hemisphere. Very few ground-truth infrasound events have been available for the Southern
Hemisphere to date, due in part to the lower station density and correspondingly lower detection capability
(Le Pichon et al., 2009) and due to the reduced number of anthropogenic sources in the more sparsely
populated hemisphere (Nippress & Green, 2017). Furthermore, Earth’s potentially active volcanoes are
unevenly distributed by hemisphere, with only about 19% located between 10° south and the South Pole
(Global Volcanism Program, 2013).

Figure 1. (a) Record section of broadband seismic data (vertical component, band-pass filtered 0.5–10 Hz, except VER unfiltered) showing the precursory seismicity
and two explosive phases of Calbuco. Station distances to Calbuco are VER (6.3 km), LL01 (118 km), PLCA (186 km), and GO07 (216 km). The plot origin time is
16:00 22 April 2015. The eruption start times (Van Eaton et al., 2016) are shown as blue lines with a moveout velocity of 6.8 km/s. Station GO07 is a colocated
seismo-acoustic station; (b) its infrasound data band-pass filtered 0.1–18 Hz. Note the asymmetric, positively skewed infrasound waveforms during hours 12 to 15.
Also note the strong similarity between PLCA and GO07 seismic data from 15 to 17 h.
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2. Regional and Remote Infrasound Observations

The IMS includes a global network of infrasound arrays designed to detect atmospheric explosions
anywhere on the planet (Figure 2); 60 stations are planned with an average spacing of about 2,000 km
and 49 stations are currently certified (Christie & Campus, 2010). Each infrasound station is an array of
at least four infrasonic sensors that digitally sample atmospheric pressure at 20 Hz. The sensors have a flat
response compliant with IMS minimum requirements from 0.02 to 4 Hz and a sensitivity of about 0.1 mPa
per count. Five IMS stations (IS02, IS08, IS09, IS27, and IS49) detected the April 2015 Calbuco eruption
(Figures 2 and 3). A detection is defined here as a coherent array detection sequence using the
Progressive Multichannel Correlation (PMCC) method (Le Pichon et al., 2010) that arrives at the appropriate
time and backazimuth, and which we can confidently discriminate from persistent background coherent
infrasound signals (clutter) (Matoza et al., 2013). IS02 (1,525 km), IS08 (2,809 km), and IS09 (3,698 km)
recorded both subplinian explosive phases. Due to varying noise levels (Figure 4), IS27 (4,800 km) detected
only Phase 2 and IS49 (5,122 km) detected only Phase 1. Only one channel (H2) of IS41 was functioning
during this time, which did clearly record both explosive phases (Figure 4); however, array processing
and detection were consequently not possible for this station. The meteorological conditions at station
IS27 resulted in high wind-noise levels during the eruption, with wind speeds well above 10 m/s starting
on 22 April 2015 in the late afternoon and persisting for at least 3 days. Wind noise levels are usually high
at station IS49 given its island location in the Atlantic Ocean.

Analysis of the IMS data from Calbuco reinforces the utility of arrays for the detection of remote volcanic infra-
sound and its discrimination from incoherent wind noise (Walker & Hedlin, 2010) and clutter (Matoza et al.,
2013) (Figures 3 and 4). For example, the predicted arrival time of Phase 1 on IS27 roughly coincides with
a broadband, long-duration pressure fluctuation superficially resembling volcanic jetting (Matoza et al.,
2009); however, array processing identifies this to be incoherent wind noise (Figure 4). Furthermore, the
closest station IS14 (Robinson Crusoe Island, Chile; 1,011 km) registers coherent signals at the right time
coming from the same backazimuth as Calbuco, which we identify as clutter, possibly surf (Garcés et al.,
2003; Le Pichon et al., 2004; Matoza et al., 2013) based on a longer time series of array detections (not shown).

The April 2015 Calbuco eruption signals were also well recorded by local and regional seismic and infrasound
stations (Figures 1, 3, and 4). Our analysis includes one local broadband seismic station (VER) operated by
OVDAS (the OVDAS preeruptive monitoring network consisted of four seismic stations and one camera; at
the time of writing the network now consists of three seismic stations, one infrasound station, and one
tiltmeter) and additional regional data publicly available through the Incorporated Research Institutions for
Seismology Data Management Center (IRIS DMC). In particular, the Chilean seismic network operates 10
seismo-acoustic stations, each consisting of a three-component broadband seismometer colocated with a
single infrasound sensor, which provide a valuable complement to the global IMS data (IRIS DMC, 2012;
http://ds.iris.edu/spud/infrasoundevent/12678628).

Infrasound is recorded above noise on four regional stations out to 1,540 km (GO07, GO08, GO04, and
GO03). Only one station (GO07, 216 km) recorded both infrasound and seismic signals from Calbuco
(Figure 1), permitting seismo-acoustic sensor pair analysis (Ichihara et al., 2012; Matoza & Fee, 2014).
The infrasound waveform at GO07 contains portions with asymmetric, positively skewed waveforms
(Figure 1), similar to previous observations 264 km from the eruption of Nabro volcano, Eritrea that were
attributed to a source process linked to supersonic flow of a volcanic jet (section 4) (Fee et al., 2013).
Although this was interpreted by Fee et al. (2013) as a source effect, it remains possible for the Nabro case
that this is partially or entirely a propagation effect resulting from nonlinear reshocking at thermospheric
altitudes (Lonzaga et al., 2015).

Seismic signals associated with the Calbuco eruption are recorded out to ~250 km on stations VER, LL01,
PLCA, and GO07 (Figures 1 and 2), consisting of a combination of impulsive volcanic earthquake signals,
sustained seismic eruption tremor, and air-ground coupled infrasound. Another local broadband OVDAS
station, PES, shows similar waveforms to those shown in Figure 1 for VER but with some telemetry gaps
(Van Eaton et al., 2016). Discrete seismic events show clear P and S phases propagating with moveouts of
6.8 km/s and 3.8 km/s, respectively, presumably representing bulk averages of crustal Vp and Vs in the region.
The precursory seismicity observed locally at VER (and PES) was partially recorded at PLCA but is obscured by
noise at LL01 and GO07 (Figure 1).
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The regional seismo-acoustic data provide valuable information on the eruption that is consistent with other
observations. Infrasound-derived eruption origin times for the two main phases, assuming a celerity of
0.3 km/s, are 21:04 22 April 2015 and 04:00 23 April 2015, respectively (Figure 3 and Tables 1a and 1b).
These origin times are consistent with those derived with local seismic data (21:04 22 April 2015; 03:54 23
April 2015) (Figure 1) and lightning analysis (21:04 22 April 2015; 04:00 23 April 2015) (Van Eaton et al.,
2016). The eruption end times are also consistent within a few minutes. Both eruption phases begin

Figure 2. Map showing Calbuco (red triangle), certified stations of the IMS network (empty inverted triangles), detecting IMS stations (green inverted triangles),
regional infrasound stations (blue inverted triangles), and regional seismic stations (blue hexagons). Black arrows indicate the direction and relative strength of
the ECMWF stratospheric wind field averaged between elevations from 40 to 60 km. The colored grid displays the predicted transmission loss in decibels (dB) relative
to a reference distance 1 km from the source at 0.5 Hz using the ECMWF wind field and the method of Le Pichon et al. (2012). Only one channel of IS41 was
functioning during this time, which did record the eruption (see Figure 4). IMS = International Monitoring System; ECMWF = European Centre for Medium-Range
Weather Forecasting.
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emergently in the regional infrasound waveforms and gradually build in amplitude over a few hours, in
agreement with the steadily increasing umbrella cloud growth (and mass eruption rate, MER) (Van Eaton
et al., 2016). Lightning, pyroclastic density current (PDC) generation, and mass eruption rate were all highest
in Phase 2 (Van Eaton et al., 2016). Infrasound amplitudes for Phase 2 are also higher (Figures 1 and 3b).
Amplitude variations in the Phase 2 infrasound between ~05:30 and 06:30 23 April 2015 are possibly related
to intermittent PDC generation (Van Eaton et al., 2016).

In order to understand the regional seismo-acoustic data, it is helpful to identify air-to-ground coupling in
seismic recordings. For the Calbuco eruption, we observe differences in the polarization of the regional seis-
mic eruption tremor signals that help to identify the recorded wave type (Figure 5). Below 2 Hz, transverse
signal amplitudes are approximately 25% larger than vertical and radial components (indicating a dominant
SH wave or Love wave Lg component). In contrast, above 2 Hz, the vertical and radial components are
approximately 10% larger than the transverse (suggesting that P, Rayleigh waves, Rg, or air-ground coupled
waves are themajor component of the wavefield). Observations that the radial components of discrete earth-
quake and explosion signals dominate across a broad frequency band suggest that the frequency variation of
the tremor wavefield is not simply a site effect (e.g., Figure 5c). This observation is consistent with air-ground
coupled energy on the seismometers at higher frequencies (>2 Hz), in which elliptically polarized seismic

Figure 3. Record sections of infrasonic signals from two explosive phases of Calbuco: 21:04 22 April 2015 (duration 1 h:31 m) and 04:00 23 April 2015 (duration
6 h:14 m). In both cases, diagonal dashed and dotted lines correspond to the start and end times of the explosive phases, respectively, according to Van Eaton
et al. (2016) and assume a stratospheric propagation celerity of 0.3 km/s. (a) Azimuth deviation record section of IMS infrasound PMCC array detections. Observed
backazimuth deviations within ±30° of the true great-circle path are scaled according to the bar in the lower right and displayed centered on the station distance
from Calbuco (dashed horizontal line). Color scale corresponds to log10(N) where N is the number of PMCC pixels in a bin of size 0.5° in azimuth and 3.5 min in
time. (b) Waveforms filtered 0.5–9 Hz from the closest regional infrasound single-channel station GO07 (216 km) and the closest IMS array IS02 (1,525 km). IMS
infrasound stations are sampled at 20 Hz; the 0.5–9 Hz filter is chosen here to show waveforms at GO07 and IS02 with the same band pass. The IS02 waveform is a
time-domain beam at the observed backazimuth and trace-velocity, and the red box indicates the time of coherent PMCC array detection. IMS = International
Monitoring System; PMCC = Progressive Multichannel Correlation.
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waves are generated within the plane of propagation (Edwards et al., 2007; Ichihara et al., 2012). These air-
ground coupled waves are formally guided waves and likely have a short range from the conversion point
(i.e., they do not propagate coherently over kilometers, only locally near the stations) (Strick & Ginzbarg,
1956). On the one seismic station that is colocated with infrasound (GO07), cross-correlation and
coherence analysis provide a strong indication of air-ground coupling (Figure 6). In addition, local seismic
waveforms high-pass filtered above 5 Hz mimic long-range infrasound waveforms corrected for
propagation delay, suggesting that air-ground coupling is a significant component of seismically observed
eruption tremor even at local distances (Matoza & Fee, 2014).

In order to compare available constraints on eruption timing and duration, Table 1a summarizes observations
from the closest recording infrasound station (GO07) and the closest recording IMS infrasound station (IS02).
We estimate signal onset and duration times for both explosive phases at the stations using twomethods: (1)
by manual examination of the waveforms and (2) using seismo-acoustic sensor pair analysis (GO07) or PMCC
(IS02). The waveforms from both explosive phases at both stations start and end gradually; our manual ana-
lysis (1) represents approximate times based on when waveforms appear and disappear below the noise
level. For the seismo-acoustic sensor pair analysis (GO07), we manually measure onset and duration from
the cross-correlation (XCOR) pattern (Ichihara et al., 2012). Seismo-acoustic cross-correlation relies on a signal

Figure 4. Record sections of infrasonic signals from the two explosive phases of Calbuco. Waveforms are normalized and
represent beams in the direction of Calbuco for the IMS arrays (except IS41). Diagonal dashed lines correspond to the start
times of the explosive phases (21:04 22 April 2015 and 04:00 23 April 2015), according to Van Eaton et al. (2016) and
assume a stratospheric propagation celerity of 0.3 km/s. The red circles underlying the IMS infrasound array data delineate
the timing of coherent PMCC detections from the direction of Calbuco (±15° of great circle path); for visibility, three red
circles are plotted for each PMCC detection, with arbitrary offsets below, inline with, and above the waveform. Only one
channel (H2) of IMS array IS41 was functioning during this time; the H2 waveform is shown and clearly records both
explosive phases, but array processing is not possible for this station. PMCC = Progressive Multichannel Correlation;
IMS = International Monitoring System.

Table 1a
Summary of Infrasound Observations at GO07 and IS02

Station Waveform first break Waveform duration (s) XCOR or PMCC onset XCOR or PMCC duration (s)

Phase 1
GO07 (216 km) 2015-04-22 21:16:15 5,430 2015-04-22 21:20:15 5,190
IS02 (1,525 km) 2015-04-22 22:46:40 4,600 2015-04-22 23:00:55 3,040
Phase 2
GO07 (216 km) 2015-04-23 04:12:20 22,360 2015-04-23 04:12:20 21,280
IS02 (1,525 km) 2015-04-23 05:21:40 22,700 2015-04-23 05:25:40 20,680

Note. All times in UT. Dates are formatted as year-month-day.
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on the seismometer, while PMCC has a detection threshold based on
waveform correlation; thus, the XCOR- and PMCC-derived durations
are shorter than those based on visible waveforms. Therefore, we
judge that the manual waveform analysis of GO07 infrasound pro-
vides the most accurate timing estimates available. The relative arrival
times for Phase 2 onsets at both stations are consistent with a celerity
of 0.3 km/s. Based on this, Table 1b shows our best estimate for the
start time and duration of both explosive phases. The inferred timings

and durations from IS02 are similar to those derived from GO07 (Table 1a), confirming that remote IMS infra-
sound observations can provide useful constraints on the eruption timing and duration. However, the remote
infrasound estimates of timing and duration contain errors of up to tens of minutes due to the emergent
nature of the signals, varying wind-noise levels, and signal-to-noise ratios (Figure 4). Variations in celerity
as a function of azimuth and range due to multipathing will introduce additional uncertainties in estimated
eruption start time and duration, which we do not consider in this study.

3. Source Location Using Remote Infrasound Arrays

The April 2015 Calbuco eruption is a useful case study to test and validate remote infrasound signal associa-
tion and source locationmethodologies using the IMS network. We apply themethod ofMatoza et al. (2017) to
detect and locate the eruption signals using a brute-force, grid-search, cross-bearings approach (Figure 7). The
method involves determining locations on the Earth’s surface where a maximal number of signal backazimuth
great-circle trajectories from multiple arrays intersect. The method described by Matoza et al. (2017) is a first-
order simplified approach that does not include corrections for infrasound propagation. However, it is well
known that stratospheric crosswinds (winds perpendicular to the propagation direction) result in significant
azimuth deviations that translate the source location solutions (e.g., Evers & Haak, 2005; Matoza, Le Pichon,
et al., 2011), as is observed in Figure 3. Observed azimuth deviations from the true great circle path (mode
of the observed minus true) are IS02 (+10.8°), IS08 (�4.5°), IS09 (�5.1°), IS27 (+6.7°), and IS49 (�3.0°).

We apply the combined signal association and source-location procedure with andwithout a crosswind correc-
tion (Figure 7). The grids shown in Figure 7 are constructed from all signals from the five IMS arrays during the
time from 22 to 23 April 2015 and have been corrected for a background prior rate of clutter predicted from the
previous 10 days (Matoza et al., 2017). We apply a static azimuth deviation correction to all array detections
within ±30° of the true source location. Static azimuth corrections are derived using 3-D ray tracing with the
WASP-3D program (Dessa et al., 2005; Virieux et al., 2004) and the ECMWF (European Centre for Medium-
Range Weather Forecasting, part of the Integrated Forecast System cycle 38r1, http://www.ecmwf.int/)

Table 1b
GO07 Best (Waveform) Inferred Eruption Timing Assuming 0.3 km/s Celerity

Phase Eruption start Eruption duration (min)

Phase 1 2015-04-22 21:04:15 90.4
Phase 2 2015-04-23 04:00:20 372.6

Note. All times in UT. Dates are formatted as year-month-day.

Figure 5. The seismic polarization of regional eruption tremor signals from Calbuco at station PLCA, as indicated by the relative amplitudes of vertical (Z), radial (R),
and transverse (T) components of motion. The partitioning of seismic energy in the (a) 2.0 to 8.0 Hz and (b) 0.5 to 2.0 Hz passbands, respectively. The data are shown
as the envelopes of the three components, with the envelopes smoothed using a 5 min running average window. Note the larger transverse component in the
lower frequency band for the tremor signals. (c) The energy partitioning for a discrete event, presumed to be a large explosion, in the 0.5 to 2.0 Hz passband. Note
that for the initial P wave, the transverse component amplitude is significantly smaller than the vertical and radial motions.
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specifications averaged over 22–23 April 2015. We note that this procedure requires the source location to be
known a priori. We aim in future work to modify this approach for implementation as a blind search by com-
puting rays from every trial source node to every receiver; however, the method used here provides an indi-
cation of the results that could be achieved with such a method.

Figure 6. Seismo-acoustic cross-correlation and coherence analysis for station GO07. (a) Infrasound (red) and vertical seis-
mic (black) waveforms filtered 3–13 Hz, (b) infrasound spectrogram, (c) vertical seismic spectrogram, (d) cross-correlation,
and (e) coherence. The cross-correlation is performed with waveforms filtered 3–13 Hz, chosen based on the coherence
spectrogram. Cross-correlation and coherence are performed in sliding time windows of 10 s. An unknown noise source
(likely local and anthropogenic) with fixed spectral peaks from 0 to 1 h (Figure 6c) generates a similar cross-correlation
signature to the eruption signals (Figure 6d).

Figure 7. Automated source location 22–23 April 2015 from the five detecting IMS stations using the brute-force, grid-search, cross-bearings method of Matoza et al.
(2017). (a) Without azimuth deviation correction (source location 522 km from true Calbuco location) and (b) with azimuth deviation correction using 3-D ray tracing
and ECMWF (source location 172 km from true). The apparent discontinuity in the source image to the north results from the IS27 contribution and maximum
distance parameter of 5,000 km. The large red circle is the source location solution (grid maximum). In Figure 7b, the small blue circle is the source location derived
without using a maximum distance cutoff (coincident with red circle). The small black circles are the source locations from jackknife tests (e.g., label “27”
corresponds to the location derived when station IS27 is not used). The jackknife solutions for IS08 and IS49 are coincident with the main source location (red and
blue circles). An animation of the grid construction is shown in supporting information Movie S1. IMS = International Monitoring System; ECMWF = European
Centre for Medium-Range Weather Forecasting.
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Although ray tracing provides a prediction of azimuth deviations, in practice, explaining infrasound observa-
tions with currently available atmospheric specifications requires interactive manual analysis (e.g., Matoza, Le
Pichon, et al., 2011). In particular, identifying eigenrays between the source and receiver is nontrivial, and pro-
pagation paths can be strongly dependent on stochastic small-scale perturbations to the available atmo-
spheric profiles, often interpreted as gravity waves not captured in spatially smoothed atmospheric
specifications (Assink et al., 2014; Green et al., 2011; Le Pichon et al., 2015; Smets et al., 2016). Our emphasis
is on developing methods that could be applied rapidly to produce analysis products to aid volcano monitor-
ing, or that could be applied automatically to large data archives; thus, we choose a more robust and
simple approach.

We assume a source at Calbuco (source altitude fixed to 3 km) and launch rays at 5 azimuth values toward
each station (from �5° to +5° of the great-circle azimuth in increments of 2.5°). For each azimuth, we launch
80 rays, with the elevation angles ranging from 0 to 40° in increments of 0.5° (sampling is done in elevation
angle, not ray parameter). Among the 400 rays launched, those with stratospheric trajectories (defined as
having a maximum turning height between 30 km and 60 km altitude) intercepting a box centered on the
station of dimension 50 km × 50 km × 5 km (in longitude, latitude, elevation, respectively) are identified as
a candidate. We define the final azimuth deviation values as the median of all candidates to represent
averages over multiple propagation paths. We note that the observed and modeled azimuth deviations
are up to 11° and 7°, respectively. Such large values can be expected for nearly southward propagation under
a stratospheric wind jet (e.g., Le Pichon et al., 2005).

A natural extension of the method would be to include a crosswind correction in all look directions computed
from each receiver to every trial source node based on the current atmospheric specification. We do not
attempt that here, but our approach provides a preliminary indication of the importance of incorporating
more realistic propagation corrections. Without the crosswind correction, the derived source location is
522 km from true (Figure 7a); with the correction, we obtain a source location at 172 km from true
(Figure 7b). Thus, as expected, the crosswind correction significantly aids with signal association and attribut-
ing a detected event to a volcano.

We perform jackknife tests to investigate the contribution of individual stations to the source location solu-
tion (Figure 7b). For example, the location labeled “27” in Figure 7b corresponds to the source location
derived without IS27 and using only the other four IMS stations (IS02, IS08, IS09, and IS49). In most cases
(IS02, IS08, IS27, and IS49), the removal of one station has only a minor effect on the source location.
However, IS09 has a slightly more important contribution given the source-receiver geometries and
azimuthal coverage. We use a maximum distance cutoff of 5,000 km for the grids shown in Figure 7; however,
removal of the distance cutoff produces an identical source location (blue circle, Figure 7b), indicating that
the source locations are primarily controlled by backazimuth intersection.

4. Discussion

The two main explosive phases of the April 2015 eruption of Calbuco are well recorded on regional seismic
stations out to 216 km (Figure 1), on regional single-sensor infrasound stations from 216 km to 1,540 km
(Figure 4) and on IMS infrasound arrays at distances from 1,525 km to 5,122 km (Figures 3 and 4). For a
real-time monitoring scenario, this case study exemplifies how incorporating regional seismo-acoustic data
would help to dramatically reduce latency for eruption detection and notification compared to using the
IMS data alone. For a celerity of 0.3 km/s, propagation time to GO07 (216 km) is 12 min, whereas to IS02
(1,525 km) it is 84 min.

Overall, the signal timing and duration determined from the remote IMS infrasound stations is consistent
with the explosion chronology determined by Van Eaton et al. (2016) and as recorded on the regional seismic
and infrasound stations, building confidence that volcanic explosion chronologies can be accurately inferred
from remote infrasound observations for events of this magnitude (Figure 3b) (e.g., Matoza, Le Pichon, et al.,
2011). Furthermore, our results indicate that an eruption event of this size can be automatically detected and
located using remote IMS infrasound data, with improvements to the source location achieved by accounting
for stratospheric crosswinds (section 3). The remaining source mislocation (172 km) is most likely a result of
inaccuracies in the atmospheric specifications, leading to errors in simulated raypaths. For example, strato-
spheric wind speeds are often underestimated in atmospheric specifications (Le Pichon et al., 2005, 2015).
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In addition, neglecting submesoscale variations in atmospheric specifications, including gravity waves, may
lead to errors in predicted paths. In the case of a marginal duct, small perturbations to the atmospheric profile
(e.g., gravity wave induced horizontal wind fluctuations) may be required to enable ducting (e.g., Green et al.,
2011). Thus, gravity waves may establish a separate duct, with a different azimuth deviation prediction than
that obtained without the gravity waves. The direct effect of gravity wave perturbations on along-path
azimuth deviations is not yet understood but could be small if random wind direction perturbations
average out along the propagation path. Uncertainties in backazimuth estimation using infrasound arrays
provide additional error (Szuberla & Olson, 2004), which is approximated in our approach with the ±2°
azimuth deviation tolerance used for the combined association and location (Matoza et al., 2017).

For a real-time detection scenario, the source location error of 172 km is not sufficient to identify a specific
volcano and may lead to ambiguity as to which particular volcano erupted. However, for a remote volcano
not monitored with local instrumentation, a source location with error of ~200 km could still be useful to
trigger a search of satellite or other data. Completing the IMS network (e.g., planned station IS01,
Bariloche, Argentina) and adding more regional infrasound arrays would both improve the location accuracy.

The seismo-acoustic cross-correlation and coherence analysis and observed polarization change above 2 Hz
for the seismic data indicate that air-ground coupling is a significant component of the seismic eruption tre-
mor waveforms at regional distances (Figures 5 and 6). Thus, existing seismic networks can help improve the
infrasonic network detection capability (e.g., Cochran & Shearer, 2006; Fee et al., 2016; Hedlin et al., 2012).

We further investigate atmospheric influence on the propagation and detectability of the Calbuco eruption by
modeling transmission loss (TL) from Calbuco using a frequency-dependent, semiempirical attenuation rela-
tionship derived fromparabolic equation simulations (Figure 2) (Le Pichon et al., 2012; Tailpied et al., 2016). We
chose this approach as it is fast to implement, requires relatively fewmodel parameters, and is thus suitable as
a near-real-time analysis tool. A rapid and simple model of infrasound propagation conditions would help
volcano observatories to interpret observed signal detection for a given eruption, network geometry, and cur-
rent atmospheric state. The attenuation relation accounts for the effects of source frequency, geometrical
spreading, and absorption. The temporal and spatial variability of the atmosphere is described using the
ECMWF operational high-spatial resolution forecasts. Along-path stratospheric wind averaged between alti-
tudes 40 and 60 km is the primary atmospheric parameter in the empirical relation (Le Pichon et al., 2012).

The color scale in Figure 2 shows infrasound TL at 0.5 Hz from Calbuco at the ground surface; this frequency
approximately corresponds to the highest observed signal-to-noise ratio for the Calbuco signals at the IMS
infrasound stations. This map provides a prediction of the IMS network detection capability for this event

Figure 8. Comparison of the waveform skewness of Calbuco GO07 infrasound data (d) with infrasound data from (a) Nabro, and acoustic data from (b) an F/A-18E
Super Hornet jet engine and (c) a GEM-60 solid rocket motor (Fee et al., 2013). The Nabro (IS19) and Calbuco (GO07) waveforms are filtered in the same band:
0.1–8 Hz. The Nabro and Calbuco plot origin times are 05:00:00 13 June 2011 and 05:04:00 23 April 2015, respectively. This figure is a reproduction of Figure 3 of Fee
et al. (2013) with the Calbuco data added for comparison. (e) Probability density functions of the waveform amplitude, with all waveforms having similar skewed
distributions with long positive tails. A Gaussian probability density function is shown in black for comparison. Note that the timescales of the volcano waveforms
(Figures 8a and 8d) are ~300–1,000 times longer than the F/A-18E and GEM-60 signals (Figures 8b and 8c) as shown, consistent with similar jet-noise processes
operating at larger spatial scales and correspondingly lower (infrasonic) frequencies (Fee et al., 2013; Matoza et al., 2009).
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given the atmospheric specification. Overall, the geographic distribution of detecting stations is well
explained to first order, which predicts<70 dB TL at detecting IMS stations (Figure 2). At the time of the erup-
tion, steady stratospheric currents favor long-range propagation eastward. The observed celerity of 0.3 km/s
is also consistent with stratospheric ducting (e.g., Brown et al., 2002). The lack of detection at IS14 is explained
by the combined effects of signal attenuation and high background noise and clutter on oceanic islands
(Brown et al., 2014; Matoza et al., 2013).

Recorded infrasound waveforms represent a convolution of the source-time function and the Green’s func-
tion describing propagation from source to receiver. At regional to remote distances, propagation effects
on recorded waveforms are significant and it is challenging to relate waveform features uniquely to source
effects. The infrasound waveforms at station GO07 (216 km) during the first ~1.5–2 h of Phase 2
(~04:00–06:00 23 April 2015) exhibit repeated asymmetric, shock-like pressure pulses with positive waveform
skewness, similar to those associated with the “crackle” phenomenon in audible noise from supersonic,
heated jet, and rocket engines (Gee et al., 2007, 2009) (Figures 1 and 8). Asymmetric waveforms similar to
those associated with crackle have been recorded associated with turbulent jetting at other volcanoes
(e.g., Fee et al., 2013; Goto et al., 2014). Asymmetric infrasound waveforms are also associated with
“chugging” (Lees et al., 2004), although chugging has a different spectral signature to that associated with
turbulent jetting (e.g., Fee et al., 2013). The waveform shape and skewness of infrasound between ~04:00
and 6:00 23 April 2015 resemble that associated with crackle from supersonic jet and rocket engines, as well
as the infrasound from the 2013 eruption of Nabro Volcano, Eritrea (Figure 8) (Fee et al., 2013).

The asymmetric GO07 waveforms may result from source effects, propagation effects (Lonzaga et al., 2015),
or a combination of both. Nonlinear reshocking can occur for both thermospheric and stratospheric propa-
gation, but is more severe for thermospheric paths (Lonzaga et al., 2015). To investigate propagation effects,
full-waveform, broadband, and nonlinear numerical propagation modeling is required (e.g., de Groot-Hedlin,
2016; Lonzaga et al., 2015) but is beyond the scope of the present study. For the 2011 Nabro eruption, ray
tracing and high trace-velocity estimates indicated a thermospheric path from the source to the receiver
at 264 km range (Fee et al., 2013). For the 2015 Calbuco eruption, WASP-3D ray tracing using ECMWF fails
to predict any arrivals at GO07 (216 km), likely because the atmospheric specifications are spatially smoothed.
Nonlinear and broadband propagation effects can also explain infrasound observations in ray shadow zones
in some cases (de Groot-Hedlin, 2016). The range of 216 km is short, but not unprecedented, for thermo-
spheric arrivals; thermospheric arrivals at ~200 km have previously been observed (Gibbons et al., 2015;
Reed, 1969; Whitaker & Mutschlecner, 2008).

The celerity estimates for arrivals at GO07 (0.3 km/s) are consistent with stratospheric propagation when
using the explosion origin times of Van Eaton et al. (2016) or when fitting a constant celerity model to
all recording infrasound stations (Figure 4 and Tables 1a and 1b). However, due to the emergent onsets
of the signals, lack of local infrasound data, variations in signal-to-noise ratio across the network, and
uncertainties in the derived explosion origin times, it is difficult to conclude with confidence that the
GO07 observations are stratospheric arrivals based on available celerity information. Furthermore, for a
long-duration, sustained eruption signal, the first-arrival celerity is not a robust indicator of the propaga-
tion path for the full waveform (Matoza, Le Pichon, et al., 2011). Steady transitions in trace velocity,
dominant frequency, and backazimuth deviation have been observed in sustained eruption signals at
arrays at remote distances, indicating a gradual transition from dominantly tropospheric, through
dominantly stratospheric, to dominantly thermospheric trajectories in a continuous waveform (Matoza,
Le Pichon, et al., 2011).

The observed GO07 infrasound waveform skewness is a broadband feature; a band-pass filter results in a
waveform that is significantly less skewed (e.g., 0.5–9 Hz filter used in Figure 3). However, for the GO07
signals, low-frequency components (<0.5 Hz) are more important than high frequencies (>5 Hz) in forming
the asymmetric waveforms. Applying a high-pass filter (>1 Hz) removes the waveform skewness. Applying a
low-pass filter (<5 Hz) preserves the waveform skewness. That said, Figure 6 shows significant signal power at
frequencies extending to the Nyquist frequency near ~18 Hz for the GO07 waveforms. These high-frequency
signal components at a range of 216 km suggest propagation along a low attenuation path (turning below
the thermosphere), and they could be produced at the source or by reshocking at altitude; numerical propa-
gation modeling would be required to confirm the propagation path and the likely generation mechanism.
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However, it remains possible that the wavefield is a superposition of phases including thermospheric phases;
thus, the presence of high frequencies does not rule out that the asymmetry (which is dominant at lower
frequencies) is a thermospheric effect. Waveform skewness is not observed at the IMS stations, which we
interpret as due to attenuation of high frequencies at the greater ranges (>1,525 km) as well as lower
signal-to-noise ratios at low frequencies (<0.5 Hz).

Although the cause of positive waveform skewness at volcanoes is currently unclear, it is possible that these
observations are explained by supersonic flow during the beginning of Phase 2 and possibly a more gas-rich
eruption column (Fee et al., 2013). The skewed infrasound waveforms also correspond temporally to the
deposition of low-density pumice (Deposit C in Romero et al., 2016) and end approximately when the
PDCs begin (Van Eaton et al., 2016). After this portion, the tephra consists of higher-density pumice
(Deposit D) (Romero et al., 2016). These observations suggest a significant change in the plume density
and dynamics at around 06:30 23 April 2015.

5. Conclusions

The twomajor explosive phases of the 22–23 April 2015 eruption of Calbuco volcano, Chile, were recorded on
seismo-acoustic stations out to 1,540 km and on five stations of the IMS infrasound network out to 5,122 km.
The remote IMS infrasound arrays provide an accurate explosion chronology consistent with the regional and
local seismo-acoustic data, increasing confidence in the use of remote infrasound observations for auto-
mated detection, location, and characterization of explosive volcanism. Augmenting the IMS in regions of
dense volcanism, even with relatively sparse regional seismo-acoustic networks, will dramatically enhance
volcanic signal detection, reduce latency, and improve discrimination capability.
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