355 research outputs found
Metrology of Complex Refractive Index for Solids in the Terahertz Regime Using Frequency Domain Spectroscopy
Frequency domain spectroscopy allows an experimenter to establish optical
properties of solids in a wide frequency band including the technically
challenging 10 THz region, and in other bands enables metrological comparison
between competing techniques. We advance a method for extracting the optical
properties of high-index solids using only transmission-mode frequency domain
spectroscopy of plane-parallel Fabry-Perot optical flats. We show that
different data processing techniques yield different kinds of systematic error,
and that some commonly used techniques have inherent systematic errors which
are underappreciated. We use model datasets to cross-compare algorithms in
isolation from experimental errors, and propose a new algorithm which has
qualitatively different systematic errors to its competitors. We show that our
proposal is more robust to experimental non-idealities such as noise or
apodization, and extract the complex refractive index spectrum of crystalline
silicon as a practical example. Finally, we advance the idea that algorithms
are complementary rather than competitive, and should be used together as part
of a toolbox for better metrology.Comment: 21 pages, 11 figures, 4 appendice
Amplified erosion above waterfalls and oversteepened bedrock reaches
None of the conventional bedrock erosion laws can predict incision immediately upslope of a waterfall lip where the flow is accelerating toward a freefall. Considering the expected increase in flow velocity and shear stress at the lip of a waterfall, we determine erosion amplification at a waterfall lip as [equation], where [equation] is the erosion rate at the upstream end of the flow acceleration zone above a waterfall, Fr is the Froude number at this setting, and n ranges between 0.5–1.7. This amplification expression suggests that erosion at the lip could be as much as 2–5 times higher relative to erosion at a normal setting with identical hydraulic geometry. Utilizing this erosion amplification expression in numerical simulations, we demonstrate its impact on reach-scale morphology above waterfalls. Amplified erosion at the lip of a waterfall can trigger the formation of an oversteepened reach whose length is longer than the flow acceleration zone, provided incision wave velocity (Vi) at the upstream edge of the flow acceleration zone is higher than the retreat velocity of the waterfall face. Such an oversteepened reach is expected to be more pronounced when Vi increases with increasing slope. The simulations also suggest that oversteepening can eventually lead to steady state gradients adjacent to a waterfall lip provided Vi decreases with increasing slope. Flow acceleration above waterfalls can thus account, at least partially, for prevalent oversteepened bedrock reaches above waterfalls. Using the cosmogenic isotope Cl-36, we demonstrate that incision wave velocity upstream of a waterfall at the Dead Sea western escarpment is probably high enough for freefall-induced oversteepening to be feasible
Si/SiGe bound-to-continuum quantum cascade emitters
Si/SiGe bound-to-continuum quantum cascade emitters designed
by self-consistent 6-band k.p modeling and grown by low energy
plasma enhanced chemical vapour deposition are presented
demonstrating electroluminescence between 1.5 and 3 THz. The
electroluminescence is Stark shifted by an electric field and
demonstrates polarized emission consistent with the design.
Transmission electron microscopy and x-ray diffraction are also
presented to characterize the thick heterolayer structure
Optical response from terahertz to visible light of electronuclear transitions in LiYF4:Ho3+
Because of its role as a model system with tunable quantum fluctuations and quenched disorder, and the desire for optical control and readout of its states, we have used high-resolution optical absorption spectroscopy to measure the crystal-field excitations for Ho3+ ions in LiHoxY1−xF4 from the terahertz to visible regimes. We show that many of the excitations yield very narrow lines visibly split even by the nuclear hyperfine interaction, making Ho3+ in LiHoxY1−xF4 a candidate host for optically addressable electronuclear qubits with quality factors as high as Q = 4.7 × 105, where the higher-lying levels are electronic singlets. Optical transitions in the easily accessible near- and mid-infrared are narrow enough to allow readout of the ground-state electronuclear qubits responsible for the interesting magnetism of LiHoxY1−xF4. While many of the higher-lying states have been observed previously, we also report here detailed spectra of terahertz excitations. The strengths of the electric and magnetic dipole crystal-field transition lines of five of the lowest excited spin-orbit manifolds of dilute LiYF4:Ho3+ were calculated and compared with measurement. The magnitude of the nuclear hyperfine coupling was used to assign the correct upper and lower states to transition lines
Optical response from terahertz to visible light of electronuclear transitions in LiYF_4:Ho^(3+)
Because of its role as a model system with tunable quantum fluctuations and quenched disorder, and the desire for optical control and readout of its states, we have used high-resolution optical absorption spectroscopy to measure the crystal-field excitations for Ho^(3+) ions in LiHo_xY_(1−x)F_4 from the terahertz to visible regimes. We show that many of the excitations yield very narrow lines visibly split even by the nuclear hyperfine interaction, making Ho^(3+) in LiHo_xY_(1−x)F_4 a candidate host for optically addressable electronuclear qubits with quality factors as high as Q = 4.7 × 10^5, where the higher-lying levels are electronic singlets. Optical transitions in the easily accessible near- and mid-infrared are narrow enough to allow readout of the ground-state electronuclear qubits responsible for the interesting magnetism of LiHo_xY_(1−x)F_4. While many of the higher-lying states have been observed previously, we also report here detailed spectra of terahertz excitations. The strengths of the electric and magnetic dipole crystal-field transition lines of five of the lowest excited spin-orbit manifolds of dilute LiYF_4:Ho^(3+) were calculated and compared with measurement. The magnitude of the nuclear hyperfine coupling was used to assign the correct upper and lower states to transition lines
Tectonic and climatic controls on rift escarpments: Erosion and flexural rebound of the Dhofar passive margin (Gulf of Aden, Oman)
International audienceWe investigate the respective roles of climatic parameters and the flexural rigidity of the lithosphere in the erosion history and behavior of two adjacent rift escarpments along the northern coast of the Gulf of Aden, in Oman. At this 25 Myr old passive margin, we define a type 1 scarp, which is high, sharp-crested and has retreated 25-30 km inland from its master fault, and a type 2 scarp, which exhibits a more rounded profile, lower relief, and still coincides with its mapped normal fault trace. Since about 15 Ma, the margin has been seasonally affected by monsoon precipitation but with contrasting effects at the type 1 and type 2 escarpments depending on the position of the Intertropical Convergence Zone in the geologic past: during peak monsoon conditions, both scarps experienced heavy rainfall and runoff, whereas during monsoon-starved conditions (such as today), the type 2 scarp experienced a foggy, moist climate while the type 1 scarp remained much drier. In order to assess the relative effects of climate and flexural parameters on the present-day morphology of the Dhofar margin, we present onedimensional numerical models of erosion and flexure along two profiles representative of the type 1 and type 2 scarps. Unlike most surface process models previously published, where present-day topography is the only criterion by which to evaluate the quality of model outputs, model behavior here is additionally constrained by independent estimates of denudation provided by geological cross sections, well-defined fault traces, and other stratigraphic markers. The best fitting models indicate that the type 1 escarpment formed under relatively arid climatic conditions and was affected by significant erosion, recession and flexural uplift due to a low (7 km) effective elastic thickness. In contrast, the morphology of the type 2 fault scarp was smoothed by a more humid climate, but a high effective elastic thickness ( 15 km) prevented it from uplifting or receding. In addition, we show that the sedimentary load acting at the foot of the escarpments exerts significant influence on their morphological evolution, though this parameter is often neglected in other scarp evolution models
Kinematic behavior of southern Alaska constrained by westward decreasing postglacial slip rates on the Denali Fault, Alaska
Long-term slip rates for the Denali Fault in southern Alaska are derived using ^(10)Be cosmogenic radionuclide (CRN) dating of offset glacial moraines at two sites. Correction of ^(10)Be CRN model ages for the effect of snow shielding uses historical, regional snow cover data scaled to the site altitudes. To integrate the time variation of snow cover, we included the relative changes in effective wetness over the last 11 ka, derived from lake-level records and δ^(18)O variations from Alaskan lakes. The moraine CRN model ages are normally distributed around an average of 12.1 ± 1.0 ka (n = 22, ± 1σ). The slip rate decreases westward from ~13 mm/a at 144°49′W to about 7 mm/a at 149°26′W. The data are consistent with a kinematic model in which southern Alaska translates northwestward at a rate of ~14 mm/a relative to a stable northern Alaska with no rotation. This suggests progressive slip partitioning between the Denali Fault and the active fold and thrust belt at the northern front of the Alaska range, with convergence rates increasing westward from ~4 mm/a to 11 mm/a between ~149°W and 145°W. As the two moraines sampled for this study were emplaced synchronously, our suggestion of a westward decrease in the slip rate of the Denali Fault relies largely upon the measured offsets at both sites, regardless of any potential systematic uncertainty in the CRN model ages
Landscape response to late Pleistocene climate change in NW Argentina: Sediment flux modulated by basin geometry and connectivity
Citation: Schildgen, T. F., Robinson, R. A. J., Savi, S., Phillips, W. M., Spencer, J. Q. G., Bookhagen, B., . . . Strecker, M. R. (2016). Landscape response to late Pleistocene climate change in NW Argentina: Sediment flux modulated by basin geometry and connectivity. Journal of Geophysical Research-Earth Surface, 121(2), 392-414. doi:10.1002/2015jf003607Fluvial fill terraces preserve sedimentary archives of landscape responses to climate change, typically over millennial timescales. In the Humahuaca Basin of NW Argentina (Eastern Cordillera, southern Central Andes), our 29 new optically stimulated luminescence ages of late Pleistocene fill terrace sediments demonstrate that the timing of past river aggradation occurred over different intervals on the western and eastern sides of the valley, despite their similar bedrock lithology, mean slopes, and precipitation. In the west, aggradation coincided with periods of increasing precipitation, while in the east, aggradation coincided with decreasing precipitation or more variable conditions. Erosion rates and grain size dependencies in our cosmogenic Be-10 analyses of modern and fill terrace sediments reveal an increased importance of landsliding compared to today on the west side during aggradation, but of similar importance during aggradation on the east side. Differences in the timing of aggradation and the Be-10 data likely result from differences in valley geometry, which causes sediment to be temporarily stored in perched basins on the east side. It appears as if periods of increasing precipitation triggered landslides throughout the region, which induced aggradation in the west, but blockage of the narrow bedrock gorges downstream from the perched basins in the east. As such, basin geometry and fluvial connectivity appear to strongly influence the timing of sediment movement through the system. For larger basins that integrate subbasins with differing geometries or degrees of connectivity (like Humahuaca), sedimentary responses to climate forcing are likely attenuated
Emergence of highly coherent quantum subsystems of a noisy and dense spin system
Quantum sensors and qubits are usually two-level systems (TLS), the quantum
analogs of classical bits which assume binary values '0' or '1'. They are
useful to the extent to which they can persist in quantum superpositions of '0'
and '1' in real environments. However, such TLS are never alone in real
materials and devices, and couplings to other degrees of freedom limit the
lifetimes - called decoherence times - of the superposition states. Decoherence
occurs via two major routes - excitation hopping and fluctuating
electromagnetic fields. Common mitigation strategies are based on material
improvements, exploitation of clock states which couple only to second rather
than first order to external perturbations, and reduction of interactions via
extreme dilution of pure materials made from isotopes selected to minimize
noise from nuclear spins. We demonstrate that for a dense TLS network in a
noisy nuclear spin bath, we can take advantage of interactions to pass from
hopping to fluctuation dominance, increasing decoherence times by almost three
orders of magnitude. In the dilute rare-earth insulator LiY1-xTbxF4, Tb ions
realize TLS characterized by a 30GHz splitting and readily implemented clock
states. Dipolar interactions lead to coherent, localized pairs of Tb ions, that
decohere due to fluctuating quantum mechanical ring-exchange interaction,
sensing the slow dynamics of the surrounding, nearly localized Tb spins. The
hopping and fluctuation regimes are sharply distinguished by their Rabi
oscillations and the invisible vs. strong effect of classic 'error correcting'
microwave pulse sequences. Laying open the decoherence mechanisms at play in a
dense, disordered and noisy network of interacting TLS, our work expands the
search space for quantum sensors and qubits to include clusters in dense,
disordered materials, that can be explored for localization effects.Comment: 39 page
- …
