347 research outputs found

    Single-lined Spectroscopic Binary Star Candidates in the RAVE Survey

    Get PDF
    Repeated spectroscopic observations of stars in the Radial Velocity Experiment (RAVE) database are used to identify and examine single-lined binary (SB1) candidates. The RAVE latest internal database (VDR3) includes radial velocities, atmospheric and other parameters for approximately quarter million of different stars with little less than 300,000 observations. In the sample of ~20,000 stars observed more than once, 1333 stars with variable radial velocities were identified. Most of them are believed to be SB1 candidates. The fraction of SB1 candidates among stars with several observations is between 10% and 15% which is the lower limit for binarity among RAVE stars. Due to the distribution of time spans between the re-observation that is biased towards relatively short timescales (days to weeks), the periods of the identified SB1 candidates are most likely in the same range. Because of the RAVE's narrow magnitude range most of the dwarf candidates belong to the thin Galactic disk while the giants are part of the thick disk with distances extending to up to a few kpc. The comparison of the list of SB1 candidates to the VSX catalog of variable stars yielded several pulsating variables among the giant population with the radial velocity variations of up to few tens of km/s. There are 26 matches between the catalog of spectroscopic binary orbits (SB9) and the whole RAVE sample for which the given periastron time and the time of RAVE observation were close enough to yield a reliable comparison. RAVE measurements of radial velocities of known spectroscopic binaries are consistent with their published radial velocity curves.Comment: 10 pages, 7 figures, accepted for publication in A

    Exploring the Morphology of RAVE Stellar Spectra

    Get PDF
    The RAdial Velocity Experiment (RAVE) is a medium resolution R~7500 spectroscopic survey of the Milky Way which already obtained over half a million stellar spectra. They present a randomly selected magnitude-limited sample, so it is important to use a reliable and automated classification scheme which identifies normal single stars and discovers different types of peculiar stars. To this end we present a morphological classification of 350,000 RAVE survey stellar spectra using locally linear embedding, a dimensionality reduction method which enables representing the complex spectral morphology in a low dimensional projected space while still preserving the properties of the local neighborhoods of spectra. We find that the majority of all spectra in the database ~90-95% belong to normal single stars, but there is also a significant population of several types of peculiars. Among them the most populated groups are those of various types of spectroscopic binary and chromospherically active stars. Both of them include several thousands of spectra. Particularly the latter group offers significant further investigation opportunities since activity of stars is a known proxy of stellar ages. Applying the same classification procedure to the sample of normal single stars alone shows that the shape of the projected manifold in two dimensional space correlates with stellar temperature, surface gravity and metallicity.Comment: 28 pages, 11 figures, accepted for publication in ApJ

    The RAVE survey: the Galactic escape speed and the mass of the Milky Way

    Get PDF
    We construct new estimates on the Galactic escape speed at various Galactocentric radii using the latest data release of the Radial Velocity Experiment (RAVE DR4). Compared to previous studies we have a database larger by a factor of 10 as well as reliable distance estimates for almost all stars. Our analysis is based on the statistical analysis of a rigorously selected sample of 90 high-velocity halo stars from RAVE and a previously published data set. We calibrate and extensively test our method using a suite of cosmological simulations of the formation of Milky Way-sized galaxies. Our best estimate of the local Galactic escape speed, which we define as the minimum speed required to reach three virial radii R340R_{340}, is 53341+54533^{+54}_{-41} km/s (90% confidence) with an additional 5% systematic uncertainty, where R340R_{340} is the Galactocentric radius encompassing a mean over-density of 340 times the critical density for closure in the Universe. From the escape speed we further derive estimates of the mass of the Galaxy using a simple mass model with two options for the mass profile of the dark matter halo: an unaltered and an adiabatically contracted Navarro, Frenk & White (NFW) sphere. If we fix the local circular velocity the latter profile yields a significantly higher mass than the un-contracted halo, but if we instead use the statistics on halo concentration parameters in large cosmological simulations as a constraint we find very similar masses for both models. Our best estimate for M340M_{340}, the mass interior to R340R_{340} (dark matter and baryons), is 1.30.3+0.4×10121.3^{+0.4}_{-0.3} \times 10^{12} M_\odot (corresponding to M200=1.60.4+0.5×1012M_{200} = 1.6^{+0.5}_{-0.4} \times 10^{12} M_\odot). This estimate is in good agreement with recently published independent mass estimates based on the kinematics of more distant halo stars and the satellite galaxy Leo I.Comment: 16 pages, 15 figures; accepted for publication in Astronomy & Astrophysic

    Synthesis of CdS and CdSe nanocrystallites using a novel single-molecule precursors approach

    Get PDF
    The synthesis of CdS and CdSe nanocrystallites using the thermolysis of several dithioor diselenocarbamato complexes of cadmium in trioctylphosphine oxide (TOPO) is reported. The nanodispersed materials obtained show quantum size effects in their optical spectra and exhibit near band-edge luminescence. The influence of experimental parameters on the properties of the nanocrystallites is discussed. HRTEM images of these materials show well-defined, crystalline nanosized particles. Standard size fractionation procedures can be performed in order to narrow the size dispersion of the samples. The TOPO-capped CdS and CdSe nanocrystallites and simple organic bridging ligands, such as 2,2¢-bipyrimidine, are used as the starting materials for the preparation of novel nanocomposites. The optical properties shown by these new nanocomposites are compared with those of the starting nanodispersed materials

    4MOST Consortium Survey 3: Milky Way Disc and Bulge Low-Resolution Survey (4MIDABLE-LR)

    Full text link
    The mechanisms of the formation and evolution of the Milky Way are encoded in the orbits, chemistry and ages of its stars. With the 4MOST MIlky way Disk And BuLgE Low-Resolution Survey (4MIDABLE-LR) we aim to study kinematic and chemical substructures in the Milky Way disc and bulge region with samples of unprecedented size out to larger distances and greater precision than conceivable with Gaia alone or any other ongoing or planned survey. Gaia gives us the unique opportunity for target selection based almost entirely on parallax and magnitude range, hence increasing the efficiency in sampling larger Milky Way volumes with well-defined and effective selection functions. Our main goal is to provide a detailed chrono-chemo-kinematical extended map of our Galaxy and the largest Gaia follow-up down to G=19G = 19 magnitudes (Vega). The complex nature of the disc components (for example, large target densities and highly structured extinction distribution in the Milky Way bulge and disc area), prompted us to develop a survey strategy with five main sub-surveys that are tailored to answer the still open questions about the assembly and evolution of our Galaxy, while taking full advantage of the Gaia data.Comment: Part of the 4MOST issue of The Messenger, published in preparation of 4MOST Community Workshop, see http://www.eso.org/sci/meetings/2019/4MOST.htm

    Novel foods in the European Union: Scientific requirements and challenges of the risk assessment process by the European Food Safety Authority

    Get PDF
    The European Food Safety Authority (EFSA) has been involved in the risk assessment of novel foods since 2003. The implementation of the current novel food regulation in 2018 rendered EFSA the sole entity of the European Union responsible for such safety evaluations. The risk assessment is based on the data submitted by applicants in line with the scientific requirements described in the respective EFSA guidance document. The present work aims to elaborate on the rationale behind the scientific questions raised during the risk assessment of novel foods, with a focus on complex mixtures and whole foods. Novel foods received by EFSA in 2003–2019 were screened and clustered by nature and complexity. The requests for additional or supplementary information raised by EFSA during all risk assessments were analyzed for identifying reoccurring issues. In brief, it is shown that applications concern mainly novel foods derived from plants, microorganisms, fungi, algae, and animals. A plethora of requests relates to the production process, the compositional characterization of the novel food, and the evaluation of the product's toxicological profile. Recurring issues related to specific novel food categories were noted. The heterogeneous nature and the variable complexity of novel foods emphasize the challenge to tailor aspects of the evaluation approach to the characteristics of each individual product. Importantly, the scientific requirements for novel food applications set by EFSA are interrelated, and only a rigorous and cross-cutting approach adopted by the applicants when preparing the respective application dossiers can lead to scientifically sound dossiers. This is the first time that an in-depth analysis of the experience gained by EFSA in the risk assessment of novel foods and of the reasoning behind the most frequent scientific requests by EFSA to applicants is made

    Safety of Eurycoma longifolia (Tongkat Ali) root extract as a novel food pursuant to Regulation (EU) 2015/2283

    Get PDF
    Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver an opinion on Eurycoma longifolia (Tongkat Ali) root extract as a novel food (NF) pursuant to Regulation (EU) 2015/2283. The NF is standardised water extract prepared from the dried ground root chips of Tongkat Ali (Eurycoma longifolia Jack) and proposed by the applicant to be used as food supplement in amounts up to 200 mg/day. The target population is the adult population, except pregnant and lactating women. The characteristic components of the NF are glycosaponins (40–65%) and eurycomanone (0.8–1.5%). It can also contain canthin-6-one alkaloids and isoscopoletin (coumarin). The NF has been present in various international markets since 2009. The Panel notes positive results from the submitted in vitro chromosome aberration test, which indicates clastogenic properties of the NF. In the requested follow-up in vivo mammalian alkaline comet assay, the NF induced positive results at the highest dose tested (2,000 mg/kg body weight (bw)) at the tissues of the first site of contact (stomach and duodenum). Histopathological evaluation of the tested tissues indicated that the positive results of the comet assay were rather due to genotoxicity than cytotoxicity. Taken together, the Panel concludes that the NF has the potential to induce DNA damage, which is of concern, particularly locally for tissues that represent first sites of contact. The Panel concludes that the safety of NF has not been established under any condition of use
    corecore