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ABSTRACT

The RAdial Velocity Experiment (RAVE) is a medium-resolution (R ∼ 7500) spectroscopic survey of the Milky
Way that has already obtained over half a million stellar spectra. They present a randomly selected magnitude-limited
sample, so it is important to use a reliable and automated classification scheme that identifies normal single stars and
discovers different types of peculiar stars. To this end, we present a morphological classification of ∼350,000 RAVE
survey stellar spectra using locally linear embedding, a dimensionality reduction method that enables representing
the complex spectral morphology in a low-dimensional projected space while still preserving the properties of
the local neighborhoods of spectra. We find that the majority of all spectra in the database (∼90%–95%) belong
to normal single stars, but there is also a significant population of several types of peculiars. Among them, the
most populated groups are those of various types of spectroscopic binary and chromospherically active stars. Both
of them include several thousands of spectra. Particularly the latter group offers significant further investigation
opportunities since activity of stars is a known proxy of stellar ages. Applying the same classification procedure to
the sample of normal single stars alone shows that the shape of the projected manifold in two-dimensional space
correlates with stellar temperature, surface gravity, and metallicity.
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1. INTRODUCTION

In the era of automated astronomical surveys, the amount
of data they produce is overwhelming. This holds especially
true for large spectroscopic surveys like the 2dF Galaxy Red-
shift Survey (Colless et al. 2001), the 6dF Galaxy Survey
(Jones et al. 2004), the RAdial Velocity Experiment (RAVE;
Steinmetz et al. 2006), the Sloan Digital Sky Survey (SDSS;
Abazajian et al. 2009), the Gaia-ESO Survey, the Hermes–Galah
project, and the highly anticipated Gaia mission. A common ap-
proach in getting an overview of the observed sample of spectra
and learning more about its morphological diversity is to clas-
sify spectra according to some criterion (a classical example is
the MKK classification scheme for single stars). When dealing
with a large spectral sample, an automated approach becomes a
necessity. Several different dimensionality reduction numerical
methods became popular for such tasks. One of the first uses of
artificial neural networks for stellar spectra classification was
performed by Gulati et al. (1994) and von Hippel et al. (1994),

followed by many other authors. Another frequently used tech-
nique applied to the same problem is principal component anal-
ysis (PCA). It was used by Connolly et al. (1995) for galaxy
spectra classification and later by other authors for the classifi-
cation of stellar spectra (e.g., Ibata & Irwin 1997; Bailer-Jones
et al. 1998; McGurk et al. 2010). Lately, another method related
to PCA named locally linear embedding (LLE; Roweis & Saul
2000) was used by VanderPlas & Connolly (2009) for classifi-
cation of SDSS galaxy spectra and by Daniel et al. (2011) for
classification of SDSS stellar spectra. The latter method seems
particularly suitable for classification purposes since it is able to
grasp the complex spectral morphologies and project the spectra
onto a low-dimensional space where the correlations between
the spectra can be studied more easily.

RAVE is an ongoing radial velocity survey aiming at mea-
suring radial velocities of up to 106 stars in the southern sky.
Based on observations with the UK Schmidt Telescope, the
experiment employs the 6dF multi-fiber instrument, which is
capable of recording up to 150 stellar spectra simultaneously.
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The wavelength range of the observed spectra is from ∼8420 Å
to ∼8780 Å with a typical resolving power of R ∼ 7500 (sim-
ilar wavelength but with somewhat larger resolving power was
selected for the instrument aboard the Gaia mission). The se-
lection of the observed stars is magnitude limited (9 < I < 12).
The reduction and analysis pipeline is designed to provide ra-
dial velocities as well as atmospheric parameters of stars. The
latter are calculated by finding the best-matching fit to the ob-
served spectrum from a library of synthetic spectra by Munari
et al. (2005). During the reduction process, all spectra are shifted
to the zero radial velocity system. The data are made publicly
available through incremental data releases. The latest one was
published by Siebert et al. (2011). Prior to this date, a couple of
papers already discussed some types of peculiar spectra found
in the RAVE survey. Munari et al. (2009) focused on luminous
blue variables in the Large Magellanic Cloud, and Matijevič
et al. (2010) analyzed spectra of double-lined spectroscopic bi-
nary candidates.

Currently, the RAVE pipeline is lacking a classification pro-
cessing stage. While it is known that the majority of spectra
observed by RAVE belong to non-peculiar single stars, a quick
browse though the spectra of already-observed stars reveals that
there is a significant number of both peculiar and problem-
atic spectra present in the database. Since the stellar parame-
ter pipeline presumes that all spectra can be properly fit by a
single-star synthetic spectrum, neglecting the outliers can lead to
wrong results in both radial velocities and atmospheric parame-
ters. Searching for peculiar spectra based on the goodness of fit
between the observed and the synthetic spectrum is very unreli-
able, and a previous classification attempt (Matijevič et al. 2010)
is only efficient at identifying double-lined spectroscopic binary
spectra, but it fails to give a reliable classification of the whole
sample. To correct for these deficiencies, this study presents
a consistent morphological classification of the RAVE spectra
with three main goals: to (1) provide a clean sample without any
peculiar or problematic spectra so further studies based on the
results of the RAVE survey can be more reliable, (2) identify
any interesting peculiar spectra, and (3) highlight all problematic
spectra that were corrupted at either the observation or reduction
stage so they can be reprocessed, if possible, or discarded.

The structure of the paper is as follows. Section 2 gives an
overview of the inner workings of the LLE method. Section 3
explains the procedure we used to classify RAVE spectra, and
finally the results of the classification are given in Section 4,
followed by a summary in Section 5.

2. LOCALLY LINEAR EMBEDDING

LLE is a general dimensionality reduction method introduced
by Roweis & Saul (2000). The key feature, and an advantage
over some other similar approaches, is that this method preserves
the relations between neighboring points in a lower-dimensional
projection. Points that are close together (by some definition of
distance) in a high-dimensional space remain close together
in a low-dimensional projected space. This makes it easier to
discover different hidden relations between data points. The
method itself is relatively simple and can be outlined in three
main steps. A detailed description and derivation can be found
in Roweis & Saul (2000), de Ridder & Duin (2002), Saul &
Roweis (2003), and VanderPlas & Connolly (2009), on which
the following is based.

When applying this method to the spectral data, each dimen-
sion in the initial D-dimensional space is represented by each

wavelength bin at which the spectrum is sampled, so each spec-
trum can be considered a point in the D-dimensional space.
In order for spectra to be comparable among each other, the
sampling points must be equal for all spectra.

Having denoted the vector of N input spectra with x =
(x1, ..., xN ), we first need to find the k nearest neighbors of
each of the members of x, where k � N . Note that the distance
between the data points is metric dependent. Throughout this
work we use Euclidean distances. For later use, we will denote
the vectors of indexes of the nearest neighbors with

ki =
{

j, if the j th spectrum is among the
nearest neighbors of the ith spectrum

0, otherwise.
(1)

Following the first step, the local geometry of each data point
is characterized by a linear combination of its neighbors. This
step requires that the manifold on which the data points lie is
sampled well enough that for all points from the data set the
linear approximation is sufficiently accurate. The cost function
related to the reconstruction error is written as

E(w) =
∑

i

∣∣∣xi −
∑

j

wi
j xj

∣∣∣2
. (2)

The index i passes through all spectra in the data set and the index
j through all the k nearest neighbors of the ith spectrum. The
weights wi

j describe the contribution of the jth neighborhood
spectrum to the reconstruction of the ith one. To find a set of
weights w = (w1, ..., wN ) that will optimally reconstruct all data
points, we need to minimize the cost function E , enforcing the
requirement that all weights contributing to the reconstruction
of a single spectrum must add up to 1,∑

j

wi
j = 1. (3)

This is done by applying the Lagrangian multiplier λi to
Equation (2),

E i(w) =
∣∣∣∑

j

wi
j (xi − xj )

∣∣∣2
(4)

→
k∑

j=1

k∑
l=1

wi
jw

i
l C

i
jl − 2λi

⎛
⎝1 −

∑
j

wi
j

⎞
⎠ , (5)

where E i(w) is the cost function corresponding to the recon-
struction of the ith point, and

Ci
jl = (xi − xj )T (xi − xl) (6)

is the neighborhood correlation matrix. The expression in
Equation (4) follows from Equation (2) when taking into account
Equation (3). Optimal weights are found to be equal to

wi
j =

∑
l

(
Ci

jl

)−1

∑
m

∑
n

(
Ci

mn

)−1 , (7)

so the inverse of the correlation matrix needs to be calculated.
Since this is a computationally intensive operation, a faster way
of calculating the weights is to solve the linear system∑

j

Ci
jlw

i
l = 1 (8)
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and to rescale the weights to satisfy Equation (3). If it happens
that the correlation matrix is almost singular, a small fraction of
the identity matrix can be added to it. VanderPlas & Connolly
(2009) suggested that a small fraction of the trace of the matrix
C can be used so that

C → C + rI, (9)

where they used the value of r = 10−3Tr(C).
In the last step of the method we need to find the d < D

dimensional space Y onto which the data points can be optimally
mapped using the same set of weights w as calculated before.
The cost function related to the projection error is given by

Ẽ(Y ) =
∑

i

∣∣∣yi −
∑

j

wi
j yj

∣∣∣2
, (10)

where yi is the vector to the ith point in the Y space. Stacking
all weights wi

j in a single N × N sparse matrix W so that each
row of the matrix corresponds to a single weight vector wi and
individual weights wi

j from wi are positioned according to the
elements from the vectors ki enables us to rewrite Equation (10)
as

Ẽ(Y ) =
n∑

j=1

n∑
l=1

Mij yT
i yj = Tr(YMYT ), (11)

where M = (I − W)(I − W)T . To avoid the trivial solution
Y = 0, we can subject this function to the constraint

(YYT ) = I. (12)

Similar as before, we can use Lagrangian multipliers, and after
setting the derivatives to zero, we finish up with

(M − �)YT = 0, (13)

where � denotes the diagonal matrix of all Lagrangian multipli-
ers. Eigenvectors with the smallest eigenvalues are the ones we
are looking for since they minimize the Ẽ(Y ) and the eigenvector
with the zero eigenvalue can be omitted since it only contributes
to translation in space (Roweis & Saul 2000; de Ridder & Duin
2002).

Because of the dependence of the projection space Y on the
weights w and consequently on the nearest neighbors of each
point, the shape of the final projection depends on the input
sample. This means that whenever new points are added to
the sample, the whole process of projecting them has to be
redone. The calculation of the projection can also be problematic
if the input sample is large. To overcome these drawbacks,
VanderPlas & Connolly (2009) proposed a method in which we
calculate the projection for only a smaller but still representative
subset (base) and then add points to an already-defined low-
dimensional space. To do that, we first need to find the k nearest
neighbors for each new point, but only among members of
the base subset. The calculation of weights remains the same
as described above, but the projection of points to the low-
dimensional space is computationally much cheaper since all
that needs to be calculated are new vectors yi ,

yi =
∑

j

wi
j yj , (14)

where yj are vectors to the k nearest neighbors in the Y space
corresponding to the ith new point.

Several steps of the described method offer a possibility for a
significant speed increase if some approximative approaches are
used, as already noted by VanderPlas & Connolly (2009). In our
calculations we used the FLANN library (Muja & Lowe 2009)
for finding the k nearest neighbors. The calculation of weights is
an easily parallelizable task and can be spread among multiple
processors with a linear speedup. Finally, eigenvectors of sparse
matrices can be iteratively calculated with Arnoldi iterations,
which produce only a few sought-after eigenvectors instead of
calculating them all. In our case, we used the routines from the
ARPACK library. The code is available upon request from the
authors.

3. CLASSIFICATION PROCEDURE

For this analysis we used the RAVE 101111 internal data
release database, which consists of 434,807 observations of
373,138 stars. Of all these spectra, we analyzed only those with
S/N > 20 and removed all spectra that are part of the first data
release. The reason for the latter exclusion is that these spectra
were polluted with second-order light and are therefore not
directly comparable to spectra recorded later when a blocking
filter was installed. This selection lowered the number of spectra
in our sample to 350,962. All spectra were treated individually,
and no connections between repeated observations of the same
objects were taken into account during the analysis.

Due to the arbitrary radial velocities of the stars, the RAVE
spectra are sampled at different wavelength bins when they
are transferred to the zero-velocity system. To make them
comparable, we resampled them to the common wavelength
range spanning from 8420 Å to 8780 Å with an equidistant
step of 0.3 Å using cubic splines. A few spectra did not cover
the selected range, so we padded them with unity values on
either side to cover the entire range. Slight oversampling (1200
wavelength bins instead of the ∼1000 bins RAVE spectra are
usually sampled at) yields better results, but the number of bins
is, on the other hand, small enough not to hog the calculations.

The first step toward producing a meaningful low-
dimensional projection of the whole sample is to define a well-
sampled base subsample onto which all other spectra can be
projected. Well sampled refers to different spectral morpholo-
gies being equally represented in the subsample. The iterative
process through which we generated the wanted base subsam-
ple was started with a random selection of 5000 spectra from
the whole set of 350,962 spectra. This number was chosen to
be large enough to include different types of spectra but still
small enough that the calculation is performed quickly. Note
that the random selection of spectra clearly violates the well-
sampled assumption because different spectral morphologies
are not represented equally, so this base subset was only used
as a starting point. With the given subsample, we calculated
the LLE projection onto a d = 3 dimensional space, setting
k = 20 and r = 10−3Tr(C). The latter two values were chosen
by trial and error and were shown to give the cleanest separation
between the quasi-classes calculated with the cross-correlation
method from Matijevič et al. (2010). Also, an example from
Saul & Roweis (2003) shows that the number of nearest neigh-
bors is not critical and does not lead to significantly different
projections as long as it is not too low or too high. Checking
different cross-sections of the projection revealed that the pro-
jected manifold is mostly embedded in the first two dimensions
(upper diagram of Figure 1), so in the following iterations we
proceeded with projecting only onto d = 2 dimensions.

3
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Figure 1. First and second iterations of the classification procedure. The size of
the symbols on both diagrams is scaled according to the distance to the nearest
neighbor of each point for better viewing. For the sake of clarity, not all points
are shown. The inset in the bottom diagram shows the central region of the
LLE projection map, where it is possible to see the main arc around which the
outliers are scattered. The dimensions on the axes are arbitrary.

To generate a better approximation of a well-sampled set, we
sieved the first projection in such a way that densely populated
areas in two dimensions were diluted, but sparsely populated
regions containing spectra with rarer morphologies were not
reduced. This was done in a separate iterative procedure. First,
the two-dimensional projection was overlaid with a randomly
positioned uniform mesh, and then a limited number of points
from each mesh bin were advanced into the next iteration step.
Continuing this process and varying the positions of the centers
of mesh bins at each step effectively sieves the sample so that
the distribution of the points is more and more uniform. This
process was stopped when the number of remaining spectra fell
just below 5000, yielding a base subsample for the next step of
the main iteration. After that we repeated the previous step of
projecting the remaining spectra from the full set onto the newly
generated base. The projected map is completely different after
the second iteration (Figure 1). Since the base subsample in the
second iteration included a greater range of different spectra,
the shape of the final projection in the second iteration was
controlled by those points. Examining the underlying spectra of

Figure 2. Four distinct groups of outliers that were identified in the second
iteration: spectra with a ghost signal, spectra with a deep TiO band, spectra with
a characteristic oscillating signal, and spectra with a strong spike in the blue
part of the spectral range.

these extreme points (marked with “ + ” in Figure 1) revealed
that the majority of the spectra have a strong spike in the bluest
part of wavelength range (bottom diagram of Figure 2). Further
investigation showed that this was clearly an observational
or reduction error since it always plagued spectra recorded
from the same few optical fibers. There are some additional
morphological groups of spectra among the extreme outliers.
One of them consists of spectra compromised by a specific
reduction error and another of spectra having very deep TiO
bands and largely offset radial velocity shifts (middle diagrams
of Figure 2). Note that the majority of TiO band spectra in the
RAVE sample do not belong in this group. Among the outliers
are also some spectra with faulty wavelength calibration and a
strong ghost signal (top diagram of Figure 2) that is caused by
the light reflected from the detector, recollimated by the camera,
reflected back by the grating, and finally reimaged by the camera
onto the detector (Saunders et al. 2004).

These spectra clearly drive the way the projection is rendered
and overshadow the majority of the other spectra, so we decided
to remove them from the sample. This was done by dropping
the most extreme outliers after visually confirming that they
had systematic problems or are from the TiO band group and
continuing with the iteration process until the projected sample
did not have any obvious outlying points anymore. A final
projection that was produced as described is shown in Figure 3.

For classifying the objects in the projected map, Daniel
et al. (2011) suggested continuing the iterative process of
picking out the outliers and grouping them together based on
the different morphologies. Unfortunately, this approach only
works for very distinct morphologies (carbon stars in our case;
see Section 4) but cannot coherently group classes that are
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Figure 3. Final LLE projection map. The top three diagrams show the cross-sections of the first three dimensions of the projected space, while the main diagram
shows the higher-resolution cross-section of the first two dimensions, where different regions can be best seen. Normal stars are intentionally represented with smaller
symbols for the sake of clarity. Colors correspond to different spectral classes based on the first three largest weights. If the first three classification flags were different,
the color was calculated as a weighted average of R(ed)G(reen)B(lue) values, where the weights were the same as returned by the LLE method. Note that this way of
coloring is only used to show how the classes mix between each other. The bottom inset shows the log density of points on the main diagram.

(A color version of this figure is available in the online journal.)

connected continuously, i.e., are governed by some process that
changes continuously. An example would be a double-lined
binary spectrum, which is easily identifiable if the Doppler
separation between the pairs of spectral lines is greater than the
resolution limit, but such a spectrum can be easily mistaken for
that of a single star if the opposite is true. Instead, we proceeded
with a different strategy. As before, we sieved the final d = 2
projection until the overall number of spectra reached ∼5000
and covered the first two dimensions as evenly as possible,
creating a new base sample. Then, we manually classified all
spectra in this base sample by selecting different regions of the

projection map from Figure 3 and assigning classification flags
to spectra in each region. The classification was made easier by
several studies of morphologies of normal and peculiar spectra
already carried out for the Gaia space mission (Munari 1999,
2002, 2003; Munari & Tomasella 1999; Munari et al. 2001;
Pavlenko et al. 2003; Ragaini et al. 2003; Marrese et al. 2004;
Tomasella et al. 2010). Since Gaia shares a common spectral
domain with the RAVE survey, the results of the studies can be
directly applied to our sample. Spectra from the base sample
were also compared to the existing solutions calculated by the
RAVE pipeline for stellar parameters (Siebert et al. 2011) to

5
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Figure 4. Low-dimensional schematic representation of assigning classes. The
central dot represents the projected spectrum being classified, while the other
dots are its nearest neighbors from the two-dimensional base subset. Note that
the dots are scattered randomly around the central spot in this representation but
would otherwise be placed differently, depending on the position in the manifold
shown in Figure 3. The thickness of the connecting line, the darkness, and the
size of the symbol correspond to the magnitude of the weight. In this example a
classified spectrum has two normal star spectra and a hot star spectrum among
its neighbors with the three largest weights; therefore, it is considered to be on
the border between the normal and hot classes (y1 ≈ −0.02 and y2 ≈ 0.01 in
Figure 3).

search for any signs of peculiarity. In the end, spectra were
divided into 11 distinct classes discussed in the next section.

The automatic classification of the remaining spectra was
conducted as follows. First, for each spectrum being classified,
the k = 20 nearest neighbors were found among the base sam-
ple and weights were calculated in the same way as described
in Section 2. Then, the weights from the reconstruction of each
spectrum were ordered according to their absolute values, from
the largest to the smallest. Since the largest weights belong to
those spectra in the base sample that are most similar to the
spectrum being classified, it is possible to assign classes to
new spectra based on the known classes of spectra from the
base sample (Figure 4). Of course, there is no guarantee
that the reference base spectra of a given spectrum are from
a single class, so multi-class classifications are possible. Exam-
ining the classification flags for a number of classified spectra
revealed that in most cases only the first three largest weights
and the corresponding base spectra are important. We decided
to leave the final classification choice to the user. If only a sin-
gle classification flag is preferred, there are multiple choices for
how to generate it. In our experience a good way of producing
a single flag is to sum all weights corresponding to the same
flag that are larger than half of the largest weight and to assign
a final flag based on which of the summed flags has the highest
score, i.e., the one with the largest sum of weights. The other
option is to present the user with three flags corresponding to
three largest weights and let the user decide on the final class.

4. MORPHOLOGICAL CLASSES OF SPECTRA

Based on the LLE projection, we classified spectra into
11 distinct classes that can further be grouped into three
supergroups. The first group represents the majority of the

RAVE spectra and includes normal single stars. Normal in
this case denotes all spectra for which it is possible to find
a suitable counterpart in the library of synthetic spectra and
for which one can therefore also calculate a reliable set of
parameters. We made a distinction between cooler and hotter
stars where the separation between the two is based on the
presence of Paschen series hydrogen lines, which are normally
found in spectra of stars with Teff � 7000 K. The second group
consists of eight different peculiar classes. The term peculiar in
a broader sense marks all spectra that do not have a counterpart
in the library of synthetic spectra and for which it is therefore
not possible to infer their atmospheric parameters by simply
finding the best-matching synthetic spectrum. In this group
there are different kinds of spectroscopic binary stars, stars
with an observable emission component in the Ca ii lines that
is a signature of chromospheric activity, cooler giant stars with
a significant TiO molecular band,20 hot and cool giants, cool
normal stars (Teff < 3500 K), carbon stars, and other types of
peculiars. The last group consists of two classes of spectra with
systematic errors. In the first class of this group are spectra with
various continuum problems (oscillating continuum caused by
poor continuum normalization, ghosting, etc.). The second class
contains spectra that were poorly calibrated in wavelength but
were not recognized as such in the initial iterations.

4.1. Normal Stars

Single stars of various stellar types are the most common
population in the RAVE sample. They contribute as much as
∼95% of the spectra if their classification is based on the
averaging method described above. Their large abundance in
comparison to other morphological types can also be confirmed
from the density plot shown in Figure 3. As these are the spectra
for which the atmospheric parameters are reliably estimated, we
calculated the LLE projection for a sample of these stars alone
to see if there are any correlations between the positions on the
projection map and various parameters. The procedure is similar
as before with the exception of the number of nearest neighbors
that was set to k = 30 since it produced slightly better results
than k = 20. Results are shown in Figure 5.

From the top diagram it is evident that the leading parameter
in the distribution of points in the two-dimensional map is the
effective temperature of the stars. The position along the arc can
be used for a quick estimate of this parameter. A small number
of points (∼100) scattered below the main arc correspond to
misclassified spectra due to slight systematic problems like an
oscillating continuum or the presence of spikes. Nevertheless,
their number is negligible in comparison to the number of the
total spectra in this sample.

The distribution of points with respect to surface gravity
is consistent with RAVE’s bimodal population distribution.
Roughly half of the sample is composed of dwarf stars and
the other half of giants, a consequence of RAVE’s magnitude
limit (Siebert et al. 2011). The separation occurs just above
y1 = 0 where the values of log(g) become consistent with giant
stars. The higher values of log(g) at the far right end of the arc
are probably overestimated since TiO bands in spectra from this
region become more pronounced, which complicates parameter
estimation.

The diagram showing the metallicity of the stars is consistent
with two populations as well. Particularly in the region that is

20 This group is equivalent to the one reviewed in Section 3. Spectra in the
excluded group have largely offset radial velocities and therefore look unique
when compared to properly shifted TiO band spectra.
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Figure 5. Cross-section of the first two dimensions of LLE projection of the
sample of normal single stars calculated with the k = 30 nearest neighbors. The
color scales in the diagrams represent different values of effective temperature
(Teff ), surface gravity (log(g)), and metallicity ([M/H]). The sizes of the points
are scaled with respect to the density of the stars for clarity.

(A color version of this figure is available in the online journal.)

populated by giants it is evident that the axis perpendicular to the
main arc describes the metallicity. This effect is stronger with
giants since their spectra show larger morphological changes
with respect to metallicity than dwarfs, but it can also be
observed in the part of the diagram populated by dwarfs. The
diagram also highlights the underestimation of the metallicity
of hot stars. This is a known problem and is attributed to the
lack of strong metallic lines in these stars.

4.2. Binary Stars

Double-lined spectroscopic binary stars (SB2) represent �1%
of the RAVE population. The true number of such objects is
hard to estimate due to their variable nature (i.e., if an SB2
is observed at a half phase, its spectrum looks very similar to
a spectrum of a single star) and line blending. However, the
simulation from Matijevič et al. (2010) found that the detection
rate should be fairly high (∼80%) for systems with orbital
periods shorter than ≈100 days. In the LLE diagram they are
close to hot metal-poor stars because their spectra share shallow
spectral lines with those two classes. Morphologically, three
different types are found among the binary sample (Figure 6).
Most common are the normal SB2s, which are well represented
by the sum of two Doppler-shifted normal single-star spectra.
Another distinct group are binaries of the RS CVn type where
one or both of the components show chromospheric activity
through emission in the Ca ii lines. In the third group are
W UMa type binary stars. Spectra of these short-period binaries
have only a few notable spectral lines that are broadened by
corotation of the components with the system’s period.

4.3. Chromospherically Active Stars/Cool Dwarfs

Chromospherically active stars are recognized by the emis-
sion component in the central part of the Ca ii triplet lines (An-
dretta et al. 2005). In the RAVE sample they are mostly dwarf

stars of spectral type K but can also be hotter and cooler. The
exact number of such stars in the RAVE sample is very difficult
to assess due to their variability and the fact that in most stars
this effect is small so only the most central parts of the Ca ii lines
are slightly elevated. Nevertheless, if they are not identified and
are considered to be normal stars, this can lead to compromised
values of atmospheric parameters. In comparison to other pecu-
liar types they are the most abundant ones (between 2% and 3%
of all RAVE spectra). Their position on the LLE map is close
to that of binaries since their Ca ii lines appear to be split. Thus,
their position overlaps with a branch of cool dwarf stars that
are rare in the RAVE survey due to the magnitude selection cut.
The level of chromospheric activity is a proxy for stellar ages
(Mamajek & Hillenbrand 2008), so these objects could be used
as an independent age estimator. A sequence of several exem-
plary spectra with a growing level of chromospheric emission
is shown in Figure 7.

Cool dwarfs, on the other hand, do not show any particularly
interesting peculiarity but were excluded from the main normal
star set because their temperatures are lower (Teff < 3500 K)
and they are thus out of reach of the synthetic library used for
modeling the spectra.

4.4. TiO Band Stars

Cool giants stars with a deep TiO molecular band in the
bluest part of the spectrum are relatively abundant in the RAVE
sample (∼1%). Some of the stars in this class are non-peculiar
giants and are excluded (same as cool dwarfs) due to the lack
of synthetic spectra in the library with which they could be
modeled. According to the SIMBAD database, there are also
many known Mira-type pulsating variables in this group. A
sequence of selected spectra of this type is shown in Figure 8.
Starting from the bottom, the leading parameter that changes the
shape of the spectra of the first group is most likely a decreasing
effective temperature. The top six spectra in the second group
exhibit an emission component in the Ca ii lines in addition to
the TiO band.

4.5. Peculiar Giants

In this case we use the label giant for the separated spectra
that lie in the bottom left corner of the projection map in
Figure 3. Again, they are not all necessarily peculiar in the
classical sense, but their morphologies are very rare in the RAVE
sample, which is why they are projected separately from the
rest of the normal stars. Also, the best-matching spectra from
the synthetic library as predicted by the parameter estimation
pipeline might not sufficiently describe these spectra, which
is particularly problematic given their usually high signal-to-
noise ratio (S/N), so their atmospheric parameters are likely
unreliable. Particularly interesting are the hotter examples (top
spectra in Figure 9) with deep N i and narrow Paschen hydrogen
lines. Overall they present a negligible contribution to the whole
sample with ∼100 objects total.

4.6. Carbon Stars

Carbon stars are another very distinct but rare morphological
group in the RAVE sample. Due to the presence of many CN
lines, the morphology of the spectra of these stars is very
different from other types. Consequently, their position on the
LLE map is isolated and they are also the only group that has
a strong third component (Figure 3). Altogether, around 100
such stars are present in the database. A sequence of different
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Figure 6. Selection of the three most common types of binary star spectra. The bottom group shows five examples of regular SB2 spectra with a growing separation
between the components. The sixth spectrum is a triple star where all three components can be observed spectroscopically. The middle group shows six examples of
RS CVn type binary stars with active components. The top group depicts spectra of W UMa type binary stars. The marks identifying individual lines are centered at
wavelengths measured in the rest system.

spectra of already-known carbon stars (according to SIMBAD
database) is shown in Figure 10.

4.7. Other Peculiar Stars

This class includes the rest of the peculiar spectra. Due to their
diverse morphologies and sparseness, it is not possible to group
and order them coherently. Some of the spectra from this class
have a strong emission component in either Ca ii or hydrogen
lines. The list includes a couple of known Wolf–Rayet stars, Be
stars, and other types of variables, but there are no more than a

few hundred such objects in the classified sample. A selection of
higher-S/N spectra from this class is shown in Figure 11. Due to
the limited amount of information available from a single RAVE
spectrum, we were unable to unambiguously identify most of
the previously unknown peculiars from this group.

4.8. Problematic Spectra

Spectra with various artifacts (oscillating continuum, ghosts,
spikes, etc.) or wrong wavelength calibration that certainly
influence the fitting procedure and hence their atmospheric
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Figure 7. Sequence of chromospherically active stars with growing amplitude of Ca ii emission (from bottom to top). The spectrum at the very bottom is only slightly
different from what a common RAVE spectrum without chromospheric emission looks like.

parameters and radial velocities account for less than 1% of
all RAVE spectra. Their position on the LLE map is scattered
around the classes, where the spectra that have no problems
reside.

5. SUMMARY AND CONCLUSIONS

The results of this study have shown that LLE can be used as
an efficient classification tool. It is able to project the complex

morphology of the RAVE stellar spectra onto a two-dimensional
space and to preserve the relations between neighboring points.

The classification procedure was made in several steps by
first repeatedly projecting the selected sample onto a low-
dimensional space and culling of the most extreme outliers,
which, it turned out, are mostly spectra with characteristic sys-
tematic problems. Culling is a necessary step since the projec-
tion heavily depends on the input sample and leaving the outliers
in the sample overshadows the more interesting morphologies
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Figure 8. Sequence of spectra with a strong TiO band. The top six spectra in addition to the molecular band also have Ca ii emission.

of other spectra. When the final classification map was cal-
culated, a base sample of ∼5000 of the most representative
spectra were selected by a sieving process that diluted the
densely populated area of the two-dimensional map but left
the sparsely populated areas untouched. After this, the sub-
selection was manually classified by assigning classification
flags from 11 distinct morphological classes to all spectra in
the subsample. Classification flags of the rest of the ∼345,000
spectra were set by finding the nearest neighbors from the base

set and relating the classification flags of the neighbors with
the highest weights to the final class of each spectrum. Since
there is no unique way in which flags get assigned, the final
choice of classification is left to the user. There are two possi-
bilities: either use a single-averaged flag or rely on the first three
flags with the highest corresponding weights. Both ways have
their uses. The first one is somewhat biased toward normal stars
(the majority class), and so some slightly peculiar spectra, i.e.,
chromospherically active stars with only a minor Ca ii emission
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Figure 9. Sequence of spectra of peculiar giant stars.

component, might be flagged as normal. Since the effect of the
emission component in this example is small, radial velocities
and atmospheric parameters can be trusted relatively well. On
the other hand, in this example there will likely be at least one
active star flag among the top three so it can be identified and
further investigated by a user interested in such peculiars. Ei-
ther way, the most morphologically different spectra belonging
to peculiar stars or stars with spectra with systematic problems

are flagged appropriately, leaving ∼90%–95% of spectra in the
normal star class.

The analysis and projection of an isolated sample of normal
single stars (selected according to the first criterion) show that
the shape of the manifold in two dimensions correlates with all
three major parameters: Teff , log(g), and [M/H]. It also separates
between two distinct populations in the RAVE sample (giants
and dwarfs) relatively well. The number of obvious outliers that
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Figure 10. Sequence of spectra of carbon stars.

are highlighted by the projection map is small (several hundred),
confirming the accuracy of the classification.

Around 5%–10% of the spectra turned out to belong to pe-
culiar stars, where the label peculiar denotes all spectra that
are plausible (i.e., not problematic) but do not conform to the
single normal star class. There are three major groups that com-
pose the majority of all peculiars: double-lined spectroscopic
binaries, chromospherically active stars, and cool stars with sig-
nificant TiO bands. In addition, there are a few minor groups,

such as carbon stars, some rare giants, cool dwarfs, and some
other peculiars. The first three groups offer the potential for
further research due to their abundance, and there is already an
observational program under way to explore the most interesting
spectra in more detail and also at other wavelengths not covered
by RAVE. Particularly, the sample of chromospherically active
stars seems interesting due to the link between the level of chro-
mospheric activity and stellar ages that can be exploited for age
estimation. We plan to treat the spectra from peculiar groups
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Figure 11. Sequence of spectra of other types (mostly unidentified) of peculiar stars.

in more detail in the series of forthcoming papers and add the
classification flags to the future data releases.

All in all, we have demonstrated that LLE is a very appealing
method when dealing with stellar or other types of astronomical
spectra. With its relatively simple machinery, it is able to
represent the complex morphological properties of spectra in
a very low dimension space, giving an opportunity for efficient
discoveries of hidden features. We have also shown that this

method can be used efficiently for consistent classification
purposes without having to rely on external information.
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Muja, M., & Lowe, D. G. 2009, in Proc. Int. Conf. on Computer Vision Theory

and Application, VISSAPP’09 (INSTICC Press), 331
Munari, U. 1999, Balt. Astron., 8, 73
Munari, U. 2002, in ASP Conf. Ser. 279, Far-Red Spectroscopy of Peculiar Stars

and the GAIA Mission, ed. C. A. Tout & W. van Hamme (San Francisco,
CA: ASP), 25

Munari, U. 2003, in ASP Conf. Ser. 298, GAIA Spectroscopy of Peculiar and
Variable Stars, ed. U. Munari (San Francisco, CA: ASP), 227

Munari, U., Siviero, A., Bienaymé, O., et al. 2009, A&A, 503, 511
Munari, U., Sordo, R., Castelli, F., & Zwitter, T. 2005, A&A, 442, 1127
Munari, U., & Tomasella, L. 1999, A&AS, 137, 521
Munari, U., Tomov, T., Zwitter, T., et al. 2001, A&A, 378, 477
Pavlenko, Y. V., Marrese, P. M., & Munari, U. 2003, in ASP Conf. Ser. 298,

GAIA Spectroscopy: Science and Technology, ed. U. Munari (San Francisco,
CA: ASP), 451

Ragaini, S., Andretta, V., Gomez, M. T., et al. 2003, in ASP Conf. Ser. 298,
GAIA Spectroscopy: Science and Technology, ed. U. Munari (San Francisco,
CA: ASP), 461

Roweis, S. T., & Saul, L. K. 2000, Science, 290, 2323
Saul, L. K., & Roweis, S. T. 2003, J. Mach. Learn. Res., 4, 119
Saunders, W., Bridges, T., Gillingham, P., et al. 2004, Proc. SPIE, 5492, 389
Siebert, A., Williams, M. E. K., Siviero, A., et al. 2011, AJ, 141, 187
Steinmetz, M., Zwitter, T., Siebert, A., et al. 2006, AJ, 132, 1645
Tomasella, L., Munari, U., Zwitter, T., et al. 2010, AJ, 140, 1758
VanderPlas, J. T., & Connolly, A. J. 2009, AJ, 138, 1365
von Hippel, T., Storrie-Lombardi, L. J., Storrie-Lombardi, M. C., & Irwin, M.

J. 1994, MNRAS, 269, 97

14

http://www.rave-survey.org
http://dx.doi.org/10.1088/0067-0049/182/2/543
http://adsabs.harvard.edu/abs/2009ApJS..182..543A
http://adsabs.harvard.edu/abs/2009ApJS..182..543A
http://dx.doi.org/10.1051/0004-6361:20041745
http://adsabs.harvard.edu/abs/2005A&A...430..669A
http://adsabs.harvard.edu/abs/2005A&A...430..669A
http://dx.doi.org/10.1046/j.1365-8711.1998.01596.x
http://adsabs.harvard.edu/abs/1998MNRAS.298..361B
http://adsabs.harvard.edu/abs/1998MNRAS.298..361B
http://dx.doi.org/10.1046/j.1365-8711.2001.04902.x
http://adsabs.harvard.edu/abs/2001MNRAS.328.1039C
http://adsabs.harvard.edu/abs/2001MNRAS.328.1039C
http://dx.doi.org/10.1086/117587
http://adsabs.harvard.edu/abs/1995AJ....110.1071C
http://adsabs.harvard.edu/abs/1995AJ....110.1071C
http://dx.doi.org/10.1088/0004-6256/142/6/203
http://adsabs.harvard.edu/abs/2011AJ....142..203D
http://adsabs.harvard.edu/abs/2011AJ....142..203D
http://dx.doi.org/10.1086/174069
http://adsabs.harvard.edu/abs/1994ApJ...426..340G
http://adsabs.harvard.edu/abs/1994ApJ...426..340G
http://dx.doi.org/10.1086/118398
http://adsabs.harvard.edu/abs/1997AJ....113.1865I
http://adsabs.harvard.edu/abs/1997AJ....113.1865I
http://dx.doi.org/10.1111/j.1365-2966.2004.08353.x
http://adsabs.harvard.edu/abs/2004MNRAS.355..747J
http://adsabs.harvard.edu/abs/2004MNRAS.355..747J
http://dx.doi.org/10.1086/591785
http://adsabs.harvard.edu/abs/2008ApJ...687.1264M
http://adsabs.harvard.edu/abs/2008ApJ...687.1264M
http://dx.doi.org/10.1051/0004-6361:20031544
http://adsabs.harvard.edu/abs/2004A&A...413..635M
http://adsabs.harvard.edu/abs/2004A&A...413..635M
http://dx.doi.org/10.1088/0004-6256/140/1/184
http://adsabs.harvard.edu/abs/2010AJ....140..184M
http://adsabs.harvard.edu/abs/2010AJ....140..184M
http://dx.doi.org/10.1088/0004-6256/139/3/1261
http://adsabs.harvard.edu/abs/2010AJ....139.1261M
http://adsabs.harvard.edu/abs/2010AJ....139.1261M
http://adsabs.harvard.edu/abs/1999BaltA...8...73M
http://adsabs.harvard.edu/abs/1999BaltA...8...73M
http://adsabs.harvard.edu/abs/2002ASPC..279...25M
http://adsabs.harvard.edu/abs/2003ASPC..298..227M
http://dx.doi.org/10.1051/0004-6361/200912398
http://adsabs.harvard.edu/abs/2009A&A...503..511M
http://adsabs.harvard.edu/abs/2009A&A...503..511M
http://dx.doi.org/10.1051/0004-6361:20042490
http://adsabs.harvard.edu/abs/2005A&A...442.1127M
http://adsabs.harvard.edu/abs/2005A&A...442.1127M
http://dx.doi.org/10.1051/aas:1999490
http://adsabs.harvard.edu/abs/1999A&AS..137..521M
http://adsabs.harvard.edu/abs/1999A&AS..137..521M
http://dx.doi.org/10.1051/0004-6361:20011230
http://adsabs.harvard.edu/abs/2001A&A...378..477M
http://adsabs.harvard.edu/abs/2001A&A...378..477M
http://adsabs.harvard.edu/abs/2003ASPC..298..451P
http://adsabs.harvard.edu/abs/2003ASPC..298..461R
http://dx.doi.org/10.1126/science.290.5500.2323
http://adsabs.harvard.edu/abs/2000Sci...290.2323R
http://adsabs.harvard.edu/abs/2000Sci...290.2323R
http://dx.doi.org/10.1117/12.550871
http://adsabs.harvard.edu/abs/2004SPIE.5492..389S
http://adsabs.harvard.edu/abs/2004SPIE.5492..389S
http://dx.doi.org/10.1088/0004-6256/141/6/187
http://adsabs.harvard.edu/abs/2011AJ....141..187S
http://adsabs.harvard.edu/abs/2011AJ....141..187S
http://dx.doi.org/10.1086/506564
http://adsabs.harvard.edu/abs/2006AJ....132.1645S
http://adsabs.harvard.edu/abs/2006AJ....132.1645S
http://dx.doi.org/10.1088/0004-6256/140/6/1758
http://adsabs.harvard.edu/abs/2010AJ....140.1758T
http://adsabs.harvard.edu/abs/2010AJ....140.1758T
http://dx.doi.org/10.1088/0004-6256/138/5/1365
http://adsabs.harvard.edu/abs/2009AJ....138.1365V
http://adsabs.harvard.edu/abs/2009AJ....138.1365V
http://adsabs.harvard.edu/abs/1994MNRAS.269...97V
http://adsabs.harvard.edu/abs/1994MNRAS.269...97V

	1. INTRODUCTION
	2. LOCALLY LINEAR EMBEDDING
	3. CLASSIFICATION PROCEDURE
	4. MORPHOLOGICAL CLASSES OF SPECTRA
	4.1. Normal Stars
	4.2. Binary Stars
	4.3. Chromospherically Active StarsCool Dwarfs
	4.4. TiO Band Stars
	4.5. Peculiar Giants
	4.6. Carbon Stars
	4.7. Other Peculiar Stars
	4.8. Problematic Spectra

	5. SUMMARY AND CONCLUSIONS
	REFERENCES

