We construct new estimates on the Galactic escape speed at various
Galactocentric radii using the latest data release of the Radial Velocity
Experiment (RAVE DR4). Compared to previous studies we have a database larger
by a factor of 10 as well as reliable distance estimates for almost all stars.
Our analysis is based on the statistical analysis of a rigorously selected
sample of 90 high-velocity halo stars from RAVE and a previously published data
set. We calibrate and extensively test our method using a suite of cosmological
simulations of the formation of Milky Way-sized galaxies. Our best estimate of
the local Galactic escape speed, which we define as the minimum speed required
to reach three virial radii R340, is 533−41+54 km/s (90%
confidence) with an additional 5% systematic uncertainty, where R340 is
the Galactocentric radius encompassing a mean over-density of 340 times the
critical density for closure in the Universe. From the escape speed we further
derive estimates of the mass of the Galaxy using a simple mass model with two
options for the mass profile of the dark matter halo: an unaltered and an
adiabatically contracted Navarro, Frenk & White (NFW) sphere. If we fix the
local circular velocity the latter profile yields a significantly higher mass
than the un-contracted halo, but if we instead use the statistics on halo
concentration parameters in large cosmological simulations as a constraint we
find very similar masses for both models. Our best estimate for M340, the
mass interior to R340 (dark matter and baryons), is 1.3−0.3+0.4×1012 M⊙ (corresponding to M200=1.6−0.4+0.5×1012 M⊙). This estimate is in good agreement with recently published
independent mass estimates based on the kinematics of more distant halo stars
and the satellite galaxy Leo I.Comment: 16 pages, 15 figures; accepted for publication in Astronomy &
Astrophysic