The RAdial Velocity Experiment (RAVE) is a medium resolution R~7500
spectroscopic survey of the Milky Way which already obtained over half a
million stellar spectra. They present a randomly selected magnitude-limited
sample, so it is important to use a reliable and automated classification
scheme which identifies normal single stars and discovers different types of
peculiar stars. To this end we present a morphological classification of
350,000 RAVE survey stellar spectra using locally linear embedding, a
dimensionality reduction method which enables representing the complex spectral
morphology in a low dimensional projected space while still preserving the
properties of the local neighborhoods of spectra. We find that the majority of
all spectra in the database ~90-95% belong to normal single stars, but there is
also a significant population of several types of peculiars. Among them the
most populated groups are those of various types of spectroscopic binary and
chromospherically active stars. Both of them include several thousands of
spectra. Particularly the latter group offers significant further investigation
opportunities since activity of stars is a known proxy of stellar ages.
Applying the same classification procedure to the sample of normal single stars
alone shows that the shape of the projected manifold in two dimensional space
correlates with stellar temperature, surface gravity and metallicity.Comment: 28 pages, 11 figures, accepted for publication in ApJ