39 research outputs found

    Fibrocytes in health and disease

    Get PDF
    Fibrocytes, a group of bone marrow-derived mesenchymal progenitor cells, were first described in 1994 as fibroblast-like, peripheral blood cells that migrate to regions of tissue injury. These cells are unique in their expression of extracellular matrix proteins concomitantly with markers of hematopoietic and monocyte lineage. The involvement of fibrocytes and the specific role they play in the process of wound repair has been a focus of study since their initial description. Fibrocytes contribute to the healing repertoire via several mechanisms; they produce a combination of cytokines, chemokines, and growth factors to create a milieu favorable for repair to occur; they serve as antigen presenting cells (APCs); they contribute to wound closure; and, they promote angiogenesis. Furthermore, regulatory pathways involving serum amyloid P, leukocyte-specific protein 1, and adenosine A2A receptors have emphasized the significant role that fibrocytes have in wound healing and fibrosis. The therapeutic targeting of fibrocytes holds promise for the augmentation of wound repair and the treatment of different fibrosing disorders

    Apnea of prematurity: from cause to treatment

    Get PDF
    Apnea of prematurity (AOP) is a common problem affecting premature infants, likely secondary to a “physiologic” immaturity of respiratory control that may be exacerbated by neonatal disease. These include altered ventilatory responses to hypoxia, hypercapnia, and altered sleep states, while the roles of gastroesophageal reflux and anemia remain controversial. Standard clinical management of the obstructive subtype of AOP includes prone positioning and continuous positive or nasal intermittent positive pressure ventilation to prevent pharyngeal collapse and alveolar atelectasis, while methylxanthine therapy is a mainstay of treatment of central apnea by stimulating the central nervous system and respiratory muscle function. Other therapies, including kangaroo care, red blood cell transfusions, and CO2 inhalation, require further study. The physiology and pathophysiology behind AOP are discussed, including the laryngeal chemoreflex and sensitivity to inhibitory neurotransmitters, as are the mechanisms by which different therapies may work and the potential long-term neurodevelopmental consequences of AOP and its treatment

    High and Low Molecular Weight Hyaluronic Acid Differentially Regulate Human Fibrocyte Differentiation

    Get PDF
    Following tissue injury, monocytes can enter the tissue and differentiate into fibroblast-like cells called fibrocytes, but little is known about what regulates this differentiation. Extracellular matrix contains high molecular weight hyaluronic acid (HMWHA; ∼2×10(6) Da). During injury, HMWHA breaks down to low molecular weight hyaluronic acid (LMWHA; ∼0.8-8×10(5) Da).In this report, we show that HMWHA potentiates the differentiation of human monocytes into fibrocytes, while LMWHA inhibits fibrocyte differentiation. Digestion of HMWHA with hyaluronidase produces small hyaluronic acid fragments, and these fragments inhibit fibrocyte differentiation. Monocytes internalize HMWHA and LMWHA equally well, suggesting that the opposing effects on fibrocyte differentiation are not due to differential internalization of HMWHA or LMWHA. Adding HMWHA to PBMC does not appear to affect the levels of the hyaluronic acid receptor CD44, whereas adding LMWHA decreases CD44 levels. The addition of anti-CD44 antibodies potentiates fibrocyte differentiation, suggesting that CD44 mediates at least some of the effect of hyaluronic acid on fibrocyte differentiation. The fibrocyte differentiation-inhibiting factor serum amyloid P (SAP) inhibits HMWHA-induced fibrocyte differentiation and potentiates LMWHA-induced inhibition. Conversely, LMWHA inhibits the ability of HMWHA, interleukin-4 (IL-4), or interleukin-13 (IL-13) to promote fibrocyte differentiation.We hypothesize that hyaluronic acid signals at least in part through CD44 to regulate fibrocyte differentiation, with a dominance hierarchy of SAP>LMWHA≥HMWHA>IL-4 or IL-13

    Complex multidisciplinary resection of a malignant rhabdoid tumor of the neck & mediastinum in a pediatric patient

    No full text
    Extrarenal malignant rhabdoid tumors (MRT) are highly aggressive tumors of childhood with a poor overall prognosis. While most commonly found within the kidney and central nervous system, MRT can also occur in other locations and present highly specific challenges for pediatric surgical providers in an effort to achieve a meaningful resection. Cervical rhabdoid tumors are extremely rare. We report the multidisciplinary management of a patient with a complex cervicothoracic malignant rhabdoid tumor who underwent successful surgical resection with a greater than one year survival
    corecore