21 research outputs found

    Изучение байесовского подхода к анализу медико-биологических данных в курсе медицинской и биологической физики

    Get PDF
    Background: The clinical behaviour of colon cancer is heterogeneous. Five-year overall survival is 50-65% with all stages included. Recurring somatic chromosomal alterations have been identified and some have shown potential as markers for dissemination of the tumour, which is responsible for most colon cancer deaths. We investigated 115 selected stage II-IV primary colon cancers for associations between chromosomal alterations and tumour dissemination. Methods: Follow-up was at least 5 years for stage II-III patients without distant recurrence. Affymetrix SNP 6.0 microarrays and allele-specific copy number analysis were used to identify chromosomal alterations. Fisher's exact test was used to associate alterations with tumour dissemination, detected at diagnosis (stage IV) or later as recurrent disease (stage II-III). Results: Loss of 1p36.11-21 was associated with tumour dissemination in microsatellite stable tumours of stage II-IV (odds ratio = 5.5). It was enriched to a similar extent in tumours with distant recurrence within stage II and stage III subgroups, and may therefore be used as a prognostic marker at diagnosis. Loss of 1p36.11-21 relative to average copy number of the genome showed similar prognostic value compared to absolute loss of copies. Therefore, the use of relative loss as a prognostic marker would benefit more patients by applying also to hyperploid cancer genomes. The association with tumour dissemination was supported by independent data from the The Cancer Genome Atlas. Conclusion: Deletions on 1p36 may be used to guide adjuvant treatment decisions in microsatellite stable colon cancer of stages II and III

    Molecular characterization of a large unselected cohort of metastatic colorectal cancers in relation to primary tumor location, rare metastatic sites and prognosis

    Get PDF
    Background: We have reported that BRAF V600E mutations and microsatellite instability-high (MSI-H) are more prevalent in a population-based cohort of metastatic colorectal cancer (mCRC) patients than has been reported from clinical trials or hospital-based patient groups. The aim was to explore if other mutations in mCRC differ in prevalence between these cohorts in relation to mismatch repair status and primary tumor location and if presence of bone or brain metastases is associated with any mutations. Material and methods: A population-based cohort of 798 mCRC patients from three regions in Scandinavia was used. Forty-four cancer related genes were investigated in a custom designed Ampliseq hotspot panel. Differences in survival were analyzed using the Kaplan–Meier estimator and the Cox regression analysis. Results: Determination of mutations was possible in 449/501 patients for 40/44 genes. Besides BRAF V600E, seen in 19% of the tumors, none of the other mutations appeared more prevalent than in trial cohorts. BRAF V600E and MSI-H, seen in 8%, were associated with poor prognosis as was right-sided primary tumor location (39%) when compared to left-sided and rectum together; however, in a multivariable regression, only the BRAF mutation retained its statistical significance. No other mutations were associated with poor prognosis. ERBB2 alterations were more common if bone metastases were present at diagnosis (17% vs. 4%, p = .011). No association was found for brain metastases. Fifty-two percent had an alteration that is treatable with an FDA-approved targeted therapy, chiefly by EGFR-inhibitor for RAS wild-type and a check-point inhibitor for MSI-H tumors. Conclusions: Right-sided tumor location, BRAF V600E mutations, but no other investigated mutation, and MSI-H are more commonly seen in an unselected cohort than is reported from clinical patient cohorts, likely because they indicate poor prognosis. Half of the patients have a tumor that is treatable with an already FDA-approved targeted drug for mCRC.publishedVersio

    From Tissue to Mutations : Genetic Profiling of Colorectal Cancer

    No full text
    Comprehensive characterisation of the mutational landscapes of solid tumours is a multistep process involving the collection of suitable samples, the extraction of nucleic acids and the preparation of these materials for mutational analyses. In this thesis, I aimed to develop a streamlined process for the analysis of colorectal cancer (CRC) patient samples in order to identify novel mutations that hallmark the development of advanced disease. Papers I and II outline a technique for serial extraction of nucleic acids from frozen tissue that we developed and subsequently implemented on a robotic platform to enable high-throughput processing. The extracted nucleic acids were validated in downstream processes relevant for genetic analyses, including traditional Sanger and next generation sequencing  techniques. In Paper III, we developed a genotyping method based on multiplex ligation-dependent genome amplification. The method was designed such that InDel polymorphisms of between 30 and 70 % prevalence in a European population were selected and amplified in a multiplex PCR assay. DNA from 24 patient-matched colorectal tumour and normal tissues was genotyped and paired with a high match probability. In Paper IV, we performed targeted resequencing of 107 primary CRCs, of which approximately half developed metastatic disease or had distant metastases at the time of diagnosis. We chose to analyse 676 genes based on their involvement in key signalling pathways in CRC. We found an enrichment of mutations in the Eph receptor tyrosine kinase gene family in metastatic patients, indicating a potential role for these genes in CRC metastasis. This thesis outlines a series of procedures that can be employed in a high-throughput setting for the analysis of solid tumours. We applied these methods to the analysis of colorectal tumours and propose a link between novel somatic mutations and metastatic disease.

    From Tissue to Mutations : Genetic Profiling of Colorectal Cancer

    No full text
    Comprehensive characterisation of the mutational landscapes of solid tumours is a multistep process involving the collection of suitable samples, the extraction of nucleic acids and the preparation of these materials for mutational analyses. In this thesis, I aimed to develop a streamlined process for the analysis of colorectal cancer (CRC) patient samples in order to identify novel mutations that hallmark the development of advanced disease. Papers I and II outline a technique for serial extraction of nucleic acids from frozen tissue that we developed and subsequently implemented on a robotic platform to enable high-throughput processing. The extracted nucleic acids were validated in downstream processes relevant for genetic analyses, including traditional Sanger and next generation sequencing  techniques. In Paper III, we developed a genotyping method based on multiplex ligation-dependent genome amplification. The method was designed such that InDel polymorphisms of between 30 and 70 % prevalence in a European population were selected and amplified in a multiplex PCR assay. DNA from 24 patient-matched colorectal tumour and normal tissues was genotyped and paired with a high match probability. In Paper IV, we performed targeted resequencing of 107 primary CRCs, of which approximately half developed metastatic disease or had distant metastases at the time of diagnosis. We chose to analyse 676 genes based on their involvement in key signalling pathways in CRC. We found an enrichment of mutations in the Eph receptor tyrosine kinase gene family in metastatic patients, indicating a potential role for these genes in CRC metastasis. This thesis outlines a series of procedures that can be employed in a high-throughput setting for the analysis of solid tumours. We applied these methods to the analysis of colorectal tumours and propose a link between novel somatic mutations and metastatic disease.

    Automated serial extraction of DNA and RNA from biobanked tissue specimens

    Get PDF
    Background: With increasing biobanking of biological samples, methods for large scale extraction of nucleic acids are in demand. The lack of such techniques designed for extraction from tissues results in a bottleneck in downstream genetic analyses, particularly in the field of cancer research. We have developed an automated procedure for tissue homogenization and extraction of DNA and RNA into separate fractions from the same frozen tissue specimen. A purpose developed magnetic bead based technology to serially extract both DNA and RNA from tissues was automated on a Tecan Freedom Evo robotic workstation. Results: 864 fresh-frozen human normal and tumor tissue samples from breast and colon were serially extracted in batches of 96 samples. Yields and quality of DNA and RNA were determined. The DNA was evaluated in several downstream analyses, and the stability of RNA was determined after 9 months of storage. The extracted DNA performed consistently well in processes including PCR-based STR analysis, HaloPlex selection and deep sequencing on an Illumina platform, and gene copy number analysis using microarrays. The RNA has performed well in RT-PCR analyses and maintains integrity upon storage. Conclusions: The technology described here enables the processing of many tissue samples simultaneously with a high quality product and a time and cost reduction for the user. This reduces the sample preparation bottleneck in cancer research. The open automation format also enables integration with upstream and downstream devices for automated sample quantitation or storage

    Recurring EPHB1 mutations in human cancers alter receptor signalling and compartmentalisation of colorectal cancer cells

    No full text
    Background Ephrin (EPH) receptors have been implicated in tumorigenesis and metastasis, but the functional understanding of mutations observed in human cancers is limited. We previously demonstrated reduced cell compartmentalisation for somatic EPHB1 mutations found in metastatic colorectal cancer cases. We therefore integrated pan-cancer and pan-EPH mutational data to prioritise recurrent EPHB1 mutations for functional studies to understand their contribution to cancer development and metastasis. Methods Here, 79,151 somatic mutations in 9,898 samples of 33 different tumour types were analysed with a bioinformatic pipeline to find 3D-mutated cluster pairs and hotspot mutations in EPH receptors. From these, 15 recurring EPHB1 mutations were stably expressed in colorectal cancer followed by confocal microscopy based in vitro compartmentalisation assays and phospho-proteome analysis. Results The 3D-protein structure-based bioinformatics analysis resulted in 63% EPHB1 mutants with compartmentalisation phenotypes vs 43% for hotspot mutations. Whereas the ligand-binding domain mutations C61Y, R90C, and R170W, the fibronectin domain mutation R351L, and the kinase domain mutation D762N displayed reduced to strongly compromised cell compartmentalisation, the kinase domain mutations R743W and G821R enhanced this phenotype. While mutants with reduced compartmentalisation also had reduced ligand induced receptor phosphorylation, the enhanced compartmentalisation was not linked to receptor phosphorylation level. Phosphoproteome mapping pinpointed the PI3K pathway and PIK3C2B phosphorylation in cells harbouring mutants with reduced compartmentalisation. Conclusions This is the first integrative study of pan-cancer EPH receptor mutations followed by in vitro validation, a robust way to identify cancer-causing mutations, uncovering EPHB1 mutation phenotypes and demonstrating the utility of protein structure-based mutation analysis in characterization of novel cancer genes.De två första författarna delar förstaförfattarskapet</p

    Recurring EPHB1 mutations in human cancers alter receptor signalling and compartmentalisation of colorectal cancer cells

    No full text
    Background Ephrin (EPH) receptors have been implicated in tumorigenesis and metastasis, but the functional understanding of mutations observed in human cancers is limited. We previously demonstrated reduced cell compartmentalisation for somatic EPHB1 mutations found in metastatic colorectal cancer cases. We therefore integrated pan-cancer and pan-EPH mutational data to prioritise recurrent EPHB1 mutations for functional studies to understand their contribution to cancer development and metastasis. Methods Here, 79,151 somatic mutations in 9,898 samples of 33 different tumour types were analysed with a bioinformatic pipeline to find 3D-mutated cluster pairs and hotspot mutations in EPH receptors. From these, 15 recurring EPHB1 mutations were stably expressed in colorectal cancer followed by confocal microscopy based in vitro compartmentalisation assays and phospho-proteome analysis. Results The 3D-protein structure-based bioinformatics analysis resulted in 63% EPHB1 mutants with compartmentalisation phenotypes vs 43% for hotspot mutations. Whereas the ligand-binding domain mutations C61Y, R90C, and R170W, the fibronectin domain mutation R351L, and the kinase domain mutation D762N displayed reduced to strongly compromised cell compartmentalisation, the kinase domain mutations R743W and G821R enhanced this phenotype. While mutants with reduced compartmentalisation also had reduced ligand induced receptor phosphorylation, the enhanced compartmentalisation was not linked to receptor phosphorylation level. Phosphoproteome mapping pinpointed the PI3K pathway and PIK3C2B phosphorylation in cells harbouring mutants with reduced compartmentalisation. Conclusions This is the first integrative study of pan-cancer EPH receptor mutations followed by in vitro validation, a robust way to identify cancer-causing mutations, uncovering EPHB1 mutation phenotypes and demonstrating the utility of protein structure-based mutation analysis in characterization of novel cancer genes.De två första författarna delar förstaförfattarskapet</p

    A Theory of Ethical Copyright

    Get PDF
    This dissertation puts forth a theory of ethical copyright. It considers the possibility of creating two new ethical functions of copyright law. These new functions would empower copyright law to protect the user’s collective right to make fair use of copyrighted materials and enforce the copyright holder’s responsibilities. Both proposals not only evince the cardinal importance of the public interest, but also open up new avenues of protecting and enhancing the public interest. Chapter One of the dissertation examines the ethical crisis looming large in copyright law and practice. Chapter Two considers the first new ethical function of copyright law by proposing that fair use should be redefined as a collective user right. Chapter Three discusses the second new ethical function of copyright law that will require the law to enforce copyright holders’ responsibilities. Chapter Four further explores how the ethical copyright theory can further promote the protection of the public interest, by embodying pluralistic values in copyright law and offering new approaches for dealing with the conflict of values in copyright law

    Automated Genotyping of Biobank Samples by Multiplex Amplification of Insertion/Deletion Polymorphisms

    No full text
    The genomic revolution in oncology will entail mutational analyses of vast numbers of patient-matched tumor and normal tissue samples. This has meant an increased risk of patient sample mix up due to manual handling. Therefore, scalable genotyping and sample identification procedures are essential to pathology biobanks. We have developed an efficient alternative to traditional genotyping methods suited for automated analysis. By targeting 53 prevalent deletions and insertions found in human populations with fluorescent multiplex ligation dependent genome amplification, followed by separation in a capillary sequencer, a peak spectrum is obtained that can be automatically analyzed. 24 tumor-normal patient samples were successfully matched using this method. The potential use of the developed assay for forensic applications is discussed
    corecore