85 research outputs found

    Anti-tumor activity of patient-derived NK cells after cell-based immunotherapy – a case report

    Get PDF
    Background: Membrane-bound heat shock protein 70 (Hsp70) serves as a tumor-specific recognition structure for Hsp70-peptide (TKD) plus IL-2 activated NK cells. A phase I clinical trial has shown that repeated re-infusions of ex vivo TKD/IL-2-activated, autologous leukapheresis product is safe. This study investigated the maintenance of the cytolytic activity of NK cells against K562 cells and autologous tumor after 6 plus 3 infusions of TKD/IL-2-activated effector cells. Methods: A stable tumor cell line was generated from the resected anastomotic relapse of a patient with colon carcinoma (pT3, N2, M0, G2). Two months after surgery, the patient received the first monthly i.v. infusion of his ex vivo TKD/IL-2-activated peripheral blood mononuclear cells (PBMNC). After 6 infusions and a pause of 3 months, the patient received another 3 cell infusions. The phenotypic characteristics and activation status of tumor and effector cells were determined immediately before and at times after each infusion. Results: The NK cell ligands Hsp70, MICA/B, and ULBP-1,2,3 were expressed on the patient's anastomotic relapse. An increased density of activatory NK cell receptors following ex vivo stimulation correlated with an enhanced anti-tumoricidal activity. After 4 re-infusion cycles, the intrinsic cytolytic activity of non-stimulated PBMNC was significantly elevated and this heightened responsiveness persisted for up to 3 months after the last infusion. Another 2 re-stimulations with TKD/IL-2 restored the cytolytic activity after the therapeutic pause. Conclusion: In a patient with colon carcinoma, repeated infusions of ex vivo TKD/IL-2-activated PBMNC initiate an intrinsic NK cell-mediated cytolytic activity against autologous tumor cells

    Improved prognostic classification of breast cancer defined by antagonistic activation patterns of immune response pathway modules.

    Get PDF
    BACKGROUND: Elucidating the activation pattern of molecular pathways across a given tumour type is a key challenge necessary for understanding the heterogeneity in clinical response and for developing novel more effective therapies. Gene expression signatures of molecular pathway activation derived from perturbation experiments in model systems as well as structural models of molecular interactions ("model signatures") constitute an important resource for estimating corresponding activation levels in tumours. However, relatively few strategies for estimating pathway activity from such model signatures exist and only few studies have used activation patterns of pathways to refine molecular classifications of cancer. METHODS: Here we propose a novel network-based method for estimating pathway activation in tumours from model signatures. We find that although the pathway networks inferred from cancer expression data are highly consistent with the prior information contained in the model signatures, that they also exhibit a highly modular structure and that estimation of pathway activity is dependent on this modular structure. We apply our methodology to a panel of 438 estrogen receptor negative (ER-) and 785 estrogen receptor positive (ER+) breast cancers to infer activation patterns of important cancer related molecular pathways. RESULTS: We show that in ER negative basal and HER2+ breast cancer, gene expression modules reflecting T-cell helper-1 (Th1) and T-cell helper-2 (Th2) mediated immune responses play antagonistic roles as major risk factors for distant metastasis. Using Boolean interaction Cox-regression models to identify non-linear pathway combinations associated with clinical outcome, we show that simultaneous high activation of Th1 and low activation of a TGF-beta pathway module defines a subtype of particularly good prognosis and that this classification provides a better prognostic model than those based on the individual pathways. In ER+ breast cancer, we find that simultaneous high MYC and RAS activity confers significantly worse prognosis than either high MYC or high RAS activity alone. We further validate these novel prognostic classifications in independent sets of 173 ER- and 567 ER+ breast cancers. CONCLUSION: We have proposed a novel method for pathway activity estimation in tumours and have shown that pathway modules antagonize or synergize to delineate novel prognostic subtypes. Specifically, our results suggest that simultaneous modulation of T-helper differentiation and TGF-beta pathways may improve clinical outcome of hormone insensitive breast cancers over treatments that target only one of these pathways.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Prognostic Impact of Immunoglobulin Kappa C (IGKC) in Early Breast Cancer

    Get PDF
    We studied the prognostic impact of tumor immunoglobulin kappa C (IGKC) mRNA expression as a marker of the humoral immune system in the FinHer trial patient population, where 1010 patients with early breast cancer were randomly allocated to either docetaxel-containing or vinorelbine-containing adjuvant chemotherapy. HER2-positive patients were additionally allocated to either trastuzumab or no trastuzumab. Hormone receptor-positive patients received tamoxifen. IGKC was evaluated in 909 tumors using quantitative real-time polymerase chain reaction, and the influence on distant disease-free survival (DDFS) was examined using univariable and multivariable Cox regression and Kaplan–Meier estimates. Interactions were analyzed using Cox regression. IGKC expression, included as continuous variable, was independently associated with DDFS in a multivariable analysis also including age, molecular subtype, grade, and pT and pN stage (HR 0.930, 95% CI 0.870–0.995, p = 0.034). An independent association with DDFS was also found in a subset analysis of triple-negative breast cancers (TNBC) (HR 0.843, 95% CI 0.724–0.983, p = 0.029), but not in luminal (HR 0.957, 95% CI 0.867–1.056, p = 0.383) or HER2-positive (HR 0.933, 95% CI 0.826–1.055, p = 0.271) cancers. No significant interaction between IGKC and chemotherapy or trastuzumab administration was detected (Pinteraction = 0.855 and 0.684, respectively). These results show that humoral immunity beneficially influences the DDFS of patients with early TNBC

    Role of thioredoxin reductase 1 and thioredoxin interacting protein in prognosis of breast cancer

    Get PDF
    Introduction: The purpose of this work was to study the prognostic influence in breast cancer of thioredoxin reductase 1 (TXNRD1) and thioredoxin interacting protein (TXNIP), key players in oxidative stress control that are currently evaluated as possible therapeutic targets. Methods: Analysis of the association of TXNRD1 and TXNIP RNA expression with the metastasis-free interval (MFI) was performed in 788 patients with node-negative breast cancer, consisting of three individual cohorts (Mainz, Rotterdam and Transbig). Correlation with metagenes and conventional clinical parameters (age, pT stage, grading, hormone and ERBB2 status) was explored. MCF-7 cells with a doxycycline-inducible expression of an oncogenic ERBB2 were used to investigate the influence of ERBB2 on TXNRD1 and TXNIP transcription. Results: TXNRD1 was associated with worse MFI in the combined cohort (hazard ratio = 1.955; P < 0.001) as well as in all three individual cohorts. In contrast, TXNIP was associated with better prognosis (hazard ratio = 0.642; P < 0.001) and similar results were obtained in all three subcohorts. Interestingly, patients with ERBB2-status-positive tumors expressed higher levels of TXNRD1. Induction of ERBB2 in MCF-7 cells caused not only an immediate increase in TXNRD1 but also a strong decrease in TXNIP. A subsequent upregulation of TXNIP as cells undergo senescence was accompanied by a strong increase in levels of reactive oxygen species. Conclusions: TXNRD1 and TXNIP are associated with prognosis in breast cancer, and ERBB2 seems to be one of the factors shifting balances of both factors of the redox control system in a prognostic unfavorable manner

    Tumor-Specific Hsp70 Plasma Membrane Localization Is Enabled by the Glycosphingolipid Gb3

    Get PDF
    Human tumors differ from normal tissues in their capacity to present Hsp70, the major stress-inducible member of the HSP70 family, on their plasma membrane. Membrane Hsp70 has been found to serve as a prognostic indicator of overall patient survival in leukemia, lower rectal and non small cell lung carcinomas. Why tumors, but not normal cells, present Hsp70 on their cell surface and the impact of membrane Hsp70 on cancer progression remains to be elucidated.Although Hsp70 has been reported to be associated with cholesterol rich microdomains (CRMs), the partner in the plasma membrane with which Hsp70 interacts has yet to be identified. Herein, global lipid profiling demonstrates that Hsp70 membrane-positive tumors differ from their membrane-negative counterparts by containing significantly higher amounts of globotriaoslyceramide (Gb3), but not of other lipids such as lactosylceramide (LacCer), dodecasaccharideceramide (DoCer), galactosylceramide (GalCer), ceramide (Cer), or the ganglioside GM1. Apart from germinal center B cells, normal tissues are Gb3 membrane-negative. Co-localization of Hsp70 and Gb3 was selectively determined in Gb3 membrane-positive tumor cells, and these cells were also shown to bind soluble Hsp70-FITC protein from outside in a concentration-dependent manner. Given that the latter interaction can be blocked by a Gb3-specific antibody, and that the depletion of globotriaosides from tumors reduces the amount of membrane-bound Hsp70, we propose that Gb3 is a binding partner for Hsp70. The in vitro finding that Hsp70 predominantly binds to artificial liposomes containing Gb3 (PC/SM/Chol/Gb3, 17/45/33/5) confirms that Gb3 is an interaction partner for Hsp70.These data indicate that the presence of Gb3 enables anchorage of Hsp70 in the plasma membrane of tumors and thus they might explain tumor-specific membrane localization of Hsp70
    • …
    corecore