118 research outputs found

    Accumulation of and Response to Auxins in Roots and Nodules of the Actinorhizal Plant Datisca glomerata Compared to the Model Legume Medicago truncatula

    Get PDF
    Actinorhizal nodules are structurally different from legume nodules and show a greater similarity to lateral roots. Because of the important role of auxins in lateral root and nodule formation, auxin profiles were examined in roots and nodules of the actinorhizal species Datisca glomerata and the model legume Medicago truncatula. The auxin response in roots and nodules of both species was analyzed in transgenic root systems expressing a beta-glucuronidase gene under control of the synthetic auxin-responsive promoter DR5. The effects of two different auxin on root development were compared for both species. The auxin present in nodules at the highest levels was phenylacetic acid (PAA). No differences were found between the concentrations of active auxins of roots vs. nodules, while levels of the auxin conjugate indole-3-acetic acid-alanine were increased in nodules compared to roots of both species. Because auxins typically act in concert with cytokinins, cytokinins were also quantified. Concentrations of cis-zeatin and some glycosylated cytokinins were dramatically increased in nodules compared to roots of D. glomerata, but not of M. truncatula. The ratio of active auxins to cytokinins remained similar in nodules compared to roots in both species. The auxin response, as shown by the activation of the DR5 promoter, seemed significantly reduced in nodules compared to roots of both species, suggesting the accumulation of auxins in cell types that do not express the signal transduction pathway leading to DR5 activation. Effects on root development were analyzed for the synthetic auxin naphthaleneacetic acid (NAA) and PAA, the dominant auxin in nodules. Both auxins had similar effects, except that the sensitivity of roots to PAA was lower than to NAA. However, while the effects of both auxins on primary root growth were similar for both species, effects on root branching were different: both auxins had the classical positive effect on root branching in M. truncatula, but a negative effect in D. glomerata. Such a negative effect of exogenous auxin on root branching has previously been found for a cucurbit that forms lateral root primordia in the meristem of the parental root; however, root branching in D. glomerata does not follow that pattern.This study was supported by two grants from the Swedish Research Council Vetenskapsrådet (VR 2007-17840-52674-16 and VR 2012-03061) and by a grant from Carl Tryggers Stiftelse för Vetenskaplig Forskning (CTS 13:354) to KP, by a grant from the Russian Science Foundation (analyses of auxin response pattern, grant no. 16-16-00089) to KND, and by a grant from the Ministry of Education, Youth and Sports of CR within the National Sustainability Program I (NPUI, grant number LO1415) to TR. UM was supported by the Australian Research Council (DP150102002)

    A Model for the Development of the Rhizobial and Arbuscular Mycorrhizal Symbioses in Legumes and Its Use to Understand the Roles of Ethylene in the Establishment of these two Symbioses

    Get PDF
    We propose a model depicting the development of nodulation and arbuscular mycorrhizae. Both processes are dissected into many steps, using Pisum sativum L. nodulation mutants as a guideline. For nodulation, we distinguish two main developmental programs, one epidermal and one cortical. Whereas Nod factors alone affect the cortical program, bacteria are required to trigger the epidermal events. We propose that the two programs of the rhizobial symbiosis evolved separately and that, over time, they came to function together. The distinction between these two programs does not exist for arbuscular mycorrhizae development despite events occurring in both root tissues. Mutations that affect both symbioses are restricted to the epidermal program. We propose here sites of action and potential roles for ethylene during the formation of the two symbioses with a specific hypothesis for nodule organogenesis. Assuming the epidermis does not make ethylene, the microsymbionts probably first encounter a regulatory level of ethylene at the epidermis–outermost cortical cell layer interface. Depending on the hormone concentrations there, infection will either progress or be blocked. In the former case, ethylene affects the cortex cytoskeleton, allowing reorganization that facilitates infection; in the latter case, ethylene acts on several enzymes that interfere with infection thread growth, causing it to abort. Throughout this review, the difficulty of generalizing the roles of ethylene is emphasized and numerous examples are given to demonstrate the diversity that exists in plants

    The Effects of Carbon Dioxide Removal on the Carbon Cycle

    Get PDF
    Increasing atmospheric CO2 is having detrimental effects on the Earth system. Societies have recognized that anthropogenic CO2 release must be rapidly reduced to avoid potentially catastrophic impacts. Achieving this via emissions reductions alone will be very difficult. Carbon dioxide removal (CDR) has been suggested to complement and compensate for insufficient emissions reductions, through increasing natural carbon sinks, engineering new carbon sinks, or combining natural uptake with engineered storage. Here, we review the carbon cycle responses to different CDR approaches and highlight the often-overlooked interaction and feedbacks between carbon reservoirs that ultimately determines CDR efficacy. We also identify future research that will be needed if CDR is to play a role in climate change mitigation, these include coordinated studies to better understand (i) the underlying mechanisms of each method, (ii) how they could be explicitly simulated, (iii) how reversible changes in the climate and carbon cycle are, and (iv) how to evaluate and monitor CDR

    23rd Century surprises: Long-term dynamics of the climate and carbon cycle under both high and net negative emissions scenarios

    Get PDF
    Future climate projections from Earth system models (ESMs) typically focus on the timescale of this century. We use a set of four ESMs and one Earth system model of intermediate complexity (EMIC) to explore the dynamics of the Earth’s climate and carbon cycles under contrasting emissions trajectories beyond this century, to the year 2300. The trajectories include a very high emissions, unmitigated fossil-fuel driven scenario, as well as a second mitigation scenario that diverges from the first scenario after 2040 and features an “overshoot”, followed by stabilization of atmospheric CO2 concentrations by means of large net-negative CO2 emissions. In both scenarios, and for all models considered here, the terrestrial system switches from being a net sink to either a neutral state or a net source of carbon, though for different reasons and centered in different geographic regions, depending on both the model and the scenario. The ocean carbon system remains a sink, albeit weakened by climate-carbon feedbacks, in all models under the high emissions scenario, and switches from sink to source in the overshoot scenario. The global mean temperature anomaly generally follows the trajectories of cumulative carbon emissions, except that 23rd-century warming continues after the cessation of carbon emissions in several models, both in the high emissions scenario and in one model in the overshoot scenario. While ocean carbon cycle responses qualitatively agree both in globally integrated and zonal-mean dynamics in both scenarios, the land models qualitatively disagree in zonal-mean dynamics, in the relative roles of vegetation and soil in driving C fluxes, in the response of the sink to CO2, and in the timing of the sink-source transition, particularly in the high emissions scenario. The lack of agreement among land models on the mechanisms and geographic patterns of carbon cycle feedbacks, alongside the potential for lagged physical climate dynamics to cause warming long after CO2 concentrations have stabilized, point to the possibility of surprises in the climate system beyond the 21st century time horizon, even under relatively mitigated global warming scenarios, which should be taken into consideration when setting global climate policy

    In need of mediation: The relation between syntax and information structure

    Get PDF
    This paper defends the view that syntax does not directly interact with information structure. Rather, information structure affects prosody, and only the latter has an interface with syntax. We illustrate this point by discussing scrambling, focus preposing, and topicalization. The position entertained here implies that syntax is not very informative when one wants to narrow down the interpretation of terms such as “focus”, “topic”, etc

    Meristemas: fontes de juventude e plasticidade no desenvolvimento vegetal

    Full text link
    corecore