389 research outputs found

    Chrysalis Spring 1984

    Get PDF
    https://commons.lib.jmu.edu/chrysalis-1980s/1001/thumbnail.jp

    Cognitive performance and leukocyte telomere length in two narrow age-range cohorts: a population study

    No full text
    BACKGROUND Cognitive function and telomere length both decline with age. A correlation between these two measures would suggest that they may be influenced by the same underlying age-related biological process. Several studies suggest telomere length may be positively correlated with cognitive performance but the evidence is equivocal. In this report, the relationships between telomere length and cognitive performance at Wave 2 and cognitive change from Wave 1 to Wave 2 are assessed in two narrow age-range population cohorts. METHODS We tested the hypothesis that leukocyte telomere length correlates positively with cognitive performance and cognitive decline in two community cohorts of middle-aged (n = 351, 44-49 years) and older (n = 295, 64-70 years) adults, who participated in two waves of a longitudinal study undertaken in the Canberra-Queanbeyan region of Australia. Telomere length was estimated at Wave 2. Cognitive performance was measured using the Symbol Digit Modalities Test, the immediate recall test of the California Verbal Learning Test, reaction time (simple & choice) and the Trails Test Part B. RESULTS Cross-sectionally at Wave 2, telomere length correlated with Symbol Digit Modalities Test scores (men) and simple reaction time (women) for the older cohort only, although the latter finding was in the opposite direction to that hypothesised. Telomere length measured at Wave 2 was not associated with cognitive change from Wave 1 to Wave 2 for either cohort, except for two associations of small magnitude (immediate recall in the older cohort, choice reaction time in older women), which were also in the contrary direction to that predicted. CONCLUSIONS These results do not give strong support to the hypothesis that leukocyte telomere length is associated with either levels of cognitive performance or age-related cognitive change.This work was supported by an Australian National Health and Medical Research Council Program Grant 179805 and an R.M. Gibson Grant from the Australian Association of Gerontology. A.F. Jorm, K.J. Anstey and H. Christensen are funded by NHMRC Fellowships

    Mentoring New Faculty: An Appreciative Approach

    Get PDF
    During this period of dramatic social and institutional change in higher education, positive induction and ongoing support for early-career and faculty members new to the campus community is essential. Disparities remain in the recruitment, development, retention, and promotion of diverse faculty, in large part because of the lack of mentoring. The purpose of this article is to enhance approaches for supporting early-career and otherwise new faculty members. Based upon the principles and processes of Appreciative Inquiry, the Appreciative Mentoring Model is presented. Each of the Appreciative Inquiry “D-phases” is described in detail together with research-based best practices that can be employed in mentoring. Prompts, questions, and specific examples designed to support the growing need for a more collaborative, fluid, dynamic, and transformative approach to mentoring are provided.

    Geodesic distance for right invariant Sobolev metrics of fractional order on the diffeomorphism group

    Full text link
    We study Sobolev-type metrics of fractional order s0s\geq0 on the group \Diff_c(M) of compactly supported diffeomorphisms of a manifold MM. We show that for the important special case M=S1M=S^1 the geodesic distance on \Diff_c(S^1) vanishes if and only if s12s\leq\frac12. For other manifolds we obtain a partial characterization: the geodesic distance on \Diff_c(M) vanishes for M=R×N,s<12M=\R\times N, s<\frac12 and for M=S1×N,s12M=S^1\times N, s\leq\frac12, with NN being a compact Riemannian manifold. On the other hand the geodesic distance on \Diff_c(M) is positive for dim(M)=1,s>12\dim(M)=1, s>\frac12 and dim(M)2,s1\dim(M)\geq2, s\geq1. For M=RnM=\R^n we discuss the geodesic equations for these metrics. For n=1n=1 we obtain some well known PDEs of hydrodynamics: Burgers' equation for s=0s=0, the modified Constantin-Lax-Majda equation for s=12s=\frac 12 and the Camassa-Holm equation for s=1s=1.Comment: 16 pages. Final versio

    An early cretaceous subduction-modified mantle underneath the ultraslow spreading Gakkel Ridge, Arctic Ocean

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Richter, M., Nebel, O., Maas, R., Mather, B., Nebel-Jacobsen, Y., Capitanio, F. A., Dick, H. J. B., & Cawood, P. A. An early cretaceous subduction-modified mantle underneath the ultraslow spreading Gakkel Ridge, Arctic Ocean. Science Advances, 6(44), (2020): eabb4340, doi:10.1126/sciadv.abb4340.Earth’s upper mantle, as sampled by mid-ocean ridge basalts (MORBs) at oceanic spreading centers, has developed chemical and isotopic heterogeneity over billions of years through focused melt extraction and re-enrichment by recycled crustal components. Chemical and isotopic heterogeneity of MORB is dwarfed by the large compositional spectrum of lavas at convergent margins, identifying subduction zones as the major site for crustal recycling into and modification of the mantle. The fate of subduction-modified mantle and if this heterogeneity transmits into MORB chemistry remains elusive. Here, we investigate the origin of upper mantle chemical heterogeneity underneath the Western Gakkel Ridge region in the Arctic Ocean through MORB geochemistry and tectonic plate reconstruction. We find that seafloor lavas from the Western Gakkel Ridge region mirror geochemical signatures of an Early Cretaceous, paleo-subduction zone, and conclude that the upper mantle can preserve a long-lived, stationary geochemical memory of past geodynamic processes.O.N. was supported by the Australian Research Council (grant FT140101062). P.A.C. was supported by the Australian Research Council (grant FL160100168). H.J.B.D. was supported by the NSF (grants PLR 9912162, PLR 0327591, OCE 0930487, and OCE 1434452). M.R. was supported by a graduate scholarship of Monash University and the SEAE

    Gated pipelined folding ADC based low power sensor for large-scale radiometric partial discharge monitoring

    Get PDF
    Partial discharge is a well-established metric for condition assessment of high-voltage plant equipment. Traditional techniques for partial discharge detection involve physical connection of sensors to the device under observation, limiting sensors to monitoring of individual apparatus, and therefore, limiting coverage. Wireless measurement provides an attractive low-cost alternative. The measurement of the radiometric signal propagated from a partial discharge source allows for multiple plant items to be observed by a single sensor, without any physical connection to the plant. Moreover, the implementation of a large-scale wireless sensor network for radiometric monitoring facilitates a simple approach to high voltage fault diagnostics. However, accurate measurement typically requires fast data conversion rates to ensure accurate measurement of faults. The use of high-speed conversion requires continuous high-power dissipation, degrading sensor efficiency and increasing cost and complexity. Thus, we propose a radiometric sensor which utilizes a gated, pipelined, sample-and-hold based folding analogue-todigital converter structure that only samples when a signal is received, reducing the power consumption and increasing the efficiency of the sensor. A proof of concept circuit has been developed using discrete components to evaluate the performance and power consumption of the system

    Design of small-molecule active-site inhibitors of the S1A family proteases as procoagulant and anticoagulant drugs

    Get PDF
    Vitamin K antagonists (VKA) have long been the default drugs for anticoagulant management in venous thrombosis. While efficacious, they are difficult to use due to interpatient dose–response variability and the risks of bleeding. The approval of fondaparinux, a heparin-derived factor Xa (fXa) inhibitor, provided validation for the development of direct oral anticoagulants (DOAC), and currently such inhibitors of thrombin and fXa are in clinical use. These agents can be used without regular coagulation monitoring, but the inherent risk of bleeding complications associated with blocking the common coagulation pathway remains. Efforts are now underway to develop DOACs that inhibit components of the intrinsic and extrinsic coagulation cascades upstream of thrombin and fX. Evidence from humans and from transgenic animal models suggests that this strategy may provide a better therapeutic margin between antithrombotic and antihemostatic effects. Here the design of active-site inhibitors of S1A proteases involved in coagulation and fibrinolysis is summarized

    Review of methods for measuring β-cell function: Design considerations from the Restoring Insulin Secretion (RISE) Consortium

    Get PDF
    The Restoring Insulin Secretion (RISE) study was initiated to evaluate interventions to slow or reverse the progression of β-cell failure in type 2 diabetes (T2D). To design the RISE study, we undertook an evaluation of methods for measurement of β-cell function and changes in β-cell function in response to interventions. In the present paper, we review approaches for measurement of β-cell function, focusing on methodologic and feasibility considerations. Methodologic considerations included: (1) the utility of each technique for evaluating key aspects of β-cell function (first- and second-phase insulin secretion, maximum insulin secretion, glucose sensitivity, incretin effects) and (2) tactics for incorporating a measurement of insulin sensitivity in order to adjust insulin secretion measures for insulin sensitivity appropriately. Of particular concern were the capacity to measure β-cell function accurately in those with poor function, as is seen in established T2D, and the capacity of each method for demonstrating treatment-induced changes in β-cell function. Feasibility considerations included: staff burden, including time and required methodological expertise; participant burden, including time and number of study visits; and ease of standardizing methods across a multicentre consortium. After this evaluation, we selected a 2-day measurement procedure, combining a 3-hour 75-g oral glucose tolerance test and a 2-stage hyperglycaemic clamp procedure, augmented with arginine

    Low power radiometric partial discharge sensor using composite transistor-reset integrator

    Get PDF
    The measurement of partial discharge provides a means of monitoring insulation health in high-voltage equipment. Traditional partial discharge measurements require separate installation for each item of plant to physically connect sensors with specific items. Wireless measurement methods provide an attractive and scalable alternative. Existing wireless monitoring technologies which use time-difference-of-arrival of a partial discharge signal at multiple, spatially separated, sensors place high demands on power consumption and cost due to a requirement for rapid sampling. A recently proposed partial discharge monitoring system using a wireless sensor network and measuring received signal strength only, has potential cost and scalability advantages. An incoherent wireless sensor incorporating a transistor-reset integrator has been developed that reduces the measurement bandwidth of the PD events and alleviates the need for high-speed sampling. It is based on composite amplifier techniques to reduce the power requirements by a factor of approximately four without compromising precision. The accuracy of the proposed sensor is compared to that obtained using a high-speed digital sampling oscilloscope. Received energies were measured over a 10 m distance in 1 m increments and produced an error within 1 dB beyond 4 m and 3.2 dB at shorter distances, resulting in a measurement accuracy within 1 m

    A review of techniques for RSS-based radiometric partial discharge localization

    Get PDF
    The lifespan assessment and maintenance planning of high-voltage power systems requires condition monitoring of all the operational equipment in a specific area. Electrical insulation of electrical apparatuses is prone to failure due to high electrical stresses, and thus it is a critical aspect that needs to be monitored. The ageing process of the electrical insulation in high voltage equipment may accelerate due to the occurrence of partial discharge (PD) that may in turn lead to catastrophic failures if the related defects are left untreated at an initial stage. Therefore, there is a requirement to monitor the PD levels so that an unexpected breakdown of high-voltage equipment is avoided. There are several ways of detecting PD, such as acoustic detection, optical detection, chemical detection, and radiometric detection. This paper focuses on reviewing techniques based on radiometric detection of PD, and more specifically, using received signal strength (RSS) for the localization of faults. This paper explores the advantages and disadvantages of radiometric techniques and presents an overview of a radiometric PD detection technique that uses a transistor reset integrator (TRI)-based wireless sensor network (WSN)
    corecore