26 research outputs found
An Enhanced Visualization of DBT Imaging Using Blind Deconvolution and Total Variation Minimization Regularization
Digital Breast Tomosynthesis (DBT) presents out-of-plane artifacts caused by features of high intensity. Given observed data and knowledge about the point spread function (PSF), deconvolution techniques recover data from a blurred version. However, a correct PSF is difficult to achieve and these methods amplify noise. When no information is available about the PSF, blind deconvolution can be used. Additionally, Total Variation (TV) minimization algorithms have achieved great success due to its virtue of preserving edges while reducing image noise. This work presents a novel approach in DBT through the study of out-of-plane artifacts using blind deconvolution and noise regularization based on TV minimization. Gradient information was also included. The methodology was tested using real phantom data and one clinical data set. The results were investigated using conventional 2D slice-by-slice visualization and 3D volume rendering. For the 2D analysis, the artifact spread function (ASF) and Full Width at Half Maximum (FWHMMASF) of the ASF were considered. The 3D quantitative analysis was based on the FWHM of disks profiles at 90°, noise and signal to noise ratio (SNR) at 0° and 90°. A marked visual decrease of the artifact with reductions of FWHMASF (2D) and FWHM90° (volume rendering) of 23.8% and 23.6%, respectively, was observed. Although there was an expected increase in noise level, SNR values were preserved after deconvolution. Regardless of the methodology and visualization approach, the objective of reducing the out-of-plane artifact was accomplished. Both for the phantom and clinical case, the artifact reduction in the z was markedly visible
Impact of total variation minimization in volume rendering visualization of breast tomosynthesis data
Background and objective:
Total Variation (TV) minimization algorithms have achieved great attention due to the virtue of decreasing noise while preserving edges. The purpose of this work is to implement and evaluate two TV minimization methods in 3D. Their performance is analyzed through 3D visualization of digital breast tomosynthesis (DBT) data with volume rendering.
Methods:
Both filters were studied with real phantom and one clinical DBT data. One algorithm was applied sequentially to all slices and the other was applied to the entire volume at once. The suitable Lagrange multiplier used in each filter equation was studied to reach the minimum 3D TV and the maximum contrast-to-noise ratio (CNR). Imaging blur was measured at 0° and 90° using two disks with different diameters (0.5 mm and 5.0 mm) and equal thickness. The quality of unfiltered and filtered data was analyzed with volume rendering at 0° and 90°.
Results:
For phantom data, with the sequential filter, a decrease of 25% in 3D TV value and an increase of 19% and 30% in CNR at 0° and 90°, respectively, were observed. When the filter is applied directly in 3D, TV value was reduced by 35% and an increase of 36% was achieved both for CNR at 0° and 90°. For the smaller disk, variations of 0% in width at half maximum (FWHM) at 0° and a decrease of about 2.5% for FWHM at 90° were observed for both filters. For the larger disk, there was a 2.5% increase in FWHM at 0° for both filters and a decrease of 6.28% and 1.69% in FWHM at 90° with the sequential filter and the 3D filter, respectively. When applied to clinical data, the performance of each filter was consistent with that obtained with the phantom.
Conclusions:
Data analysis confirmed the relevance of these methods in improving quality of DBT images. Additionally, this type of 3D visualization showed that it may play an important complementary role in DBT imaging. It allows to visualize all DBT data at once and to analyze properly filters applied to all the three dimensions
Clear-PEM: A PET imaging system dedicated to breast cancer diagnostics
The Clear-PEM scanner for positron emission mammography under development is described. The detector is based on pixelized LYSO crystals optically coupled to avalanche photodiodes and readout by a fast low-noise electronic system. A dedicated digital trigger (TGR) and data acquisition (DAQ) system is used for on-line selection of coincidence events with high efficiency, large bandwidth and small dead-time. A specialized gantry allows to perform exams of the breast and of the axilla. In this paper we present results of the measurement of detector modules that integrate the system under construction as well as the imaging performance estimated from Monte Carlo simulated data.http://www.sciencedirect.com/science/article/B6TJM-4M942B5-D/1/e8aea93baa1aeae3538ea200a5a5466
Status Update and Interim Results from the Asymptomatic Carotid Surgery Trial-2 (ACST-2)
Objectives: ACST-2 is currently the largest trial ever conducted to compare carotid artery stenting (CAS) with carotid endarterectomy (CEA) in patients with severe asymptomatic carotid stenosis requiring revascularization. Methods: Patients are entered into ACST-2 when revascularization is felt to be clearly indicated, when CEA and CAS are both possible, but where there is substantial uncertainty as to which is most appropriate. Trial surgeons and interventionalists are expected to use their usual techniques and CE-approved devices. We report baseline characteristics and blinded combined interim results for 30-day mortality and major morbidity for 986 patients in the ongoing trial up to September 2012. Results: A total of 986 patients (687 men, 299 women), mean age 68.7 years (SD ± 8.1) were randomized equally to CEA or CAS. Most (96%) had ipsilateral stenosis of 70-99% (median 80%) with contralateral stenoses of 50-99% in 30% and contralateral occlusion in 8%. Patients were on appropriate medical treatment. For 691 patients undergoing intervention with at least 1-month follow-up and Rankin scoring at 6 months for any stroke, the overall serious cardiovascular event rate of periprocedural (within 30 days) disabling stroke, fatal myocardial infarction, and death at 30 days was 1.0%. Conclusions: Early ACST-2 results suggest contemporary carotid intervention for asymptomatic stenosis has a low risk of serious morbidity and mortality, on par with other recent trials. The trial continues to recruit, to monitor periprocedural events and all types of stroke, aiming to randomize up to 5,000 patients to determine any differential outcomes between interventions. Clinical trial: ISRCTN21144362. © 2013 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved
Second asymptomatic carotid surgery trial (ACST-2): a randomised comparison of carotid artery stenting versus carotid endarterectomy
Background: Among asymptomatic patients with severe carotid artery stenosis but no recent stroke or transient cerebral ischaemia, either carotid artery stenting (CAS) or carotid endarterectomy (CEA) can restore patency and reduce long-term stroke risks. However, from recent national registry data, each option causes about 1% procedural risk of disabling stroke or death. Comparison of their long-term protective effects requires large-scale randomised evidence. Methods: ACST-2 is an international multicentre randomised trial of CAS versus CEA among asymptomatic patients with severe stenosis thought to require intervention, interpreted with all other relevant trials. Patients were eligible if they had severe unilateral or bilateral carotid artery stenosis and both doctor and patient agreed that a carotid procedure should be undertaken, but they were substantially uncertain which one to choose. Patients were randomly allocated to CAS or CEA and followed up at 1 month and then annually, for a mean 5 years. Procedural events were those within 30 days of the intervention. Intention-to-treat analyses are provided. Analyses including procedural hazards use tabular methods. Analyses and meta-analyses of non-procedural strokes use Kaplan-Meier and log-rank methods. The trial is registered with the ISRCTN registry, ISRCTN21144362. Findings: Between Jan 15, 2008, and Dec 31, 2020, 3625 patients in 130 centres were randomly allocated, 1811 to CAS and 1814 to CEA, with good compliance, good medical therapy and a mean 5 years of follow-up. Overall, 1% had disabling stroke or death procedurally (15 allocated to CAS and 18 to CEA) and 2% had non-disabling procedural stroke (48 allocated to CAS and 29 to CEA). Kaplan-Meier estimates of 5-year non-procedural stroke were 2·5% in each group for fatal or disabling stroke, and 5·3% with CAS versus 4·5% with CEA for any stroke (rate ratio [RR] 1·16, 95% CI 0·86–1·57; p=0·33). Combining RRs for any non-procedural stroke in all CAS versus CEA trials, the RR was similar in symptomatic and asymptomatic patients (overall RR 1·11, 95% CI 0·91–1·32; p=0·21). Interpretation: Serious complications are similarly uncommon after competent CAS and CEA, and the long-term effects of these two carotid artery procedures on fatal or disabling stroke are comparable. Funding: UK Medical Research Council and Health Technology Assessment Programme
Optimization of Breast Tomosynthesis Visualization through 3D Volume Rendering
3D volume rendering may represent a complementary option in the visualization of Digital Breast Tomosynthesis (DBT) examinations by providing an understanding of the underlying data at once. Rendering parameters directly influence the quality of rendered images. The purpose of this work is to study the influence of two of these parameters (voxel dimension in z direction and sampling distance) on DBT rendered data. Both parameters were studied with a real phantom and one clinical DBT data set. The voxel size was changed from 0.085 × 0.085 × 1.0 mm3 to 0.085 × 0.085 × 0.085 mm3 using ten interpolation functions available in the Visualization Toolkit library (VTK) and several sampling distance values were evaluated. The results were investigated at 90ºusing volume rendering visualization with composite technique. For phantom quantitative analysis, degree of smoothness, contrast-to-noise ratio, and full width at half maximum of a Gaussian curve fitted to the profile of one disk were used. Additionally, the time required for each visualization was also recorded. Hamming interpolation function presented the best compromise in image quality. The sampling distance values that showed a better balance between time and image quality were 0.025 mm and 0.05 mm. With the appropriate rendering parameters, a significant improvement in rendered images was achieved
Calculation of transfer functions for volume rendering of breast tomosynthesis imaging
Slice by slice visualization of Digital Breast Tomosynthesis (DBT) data is time consuming and can hamper the
interpretation of lesions such as clusters of microcalcifications. With a visualization of the object through multiple
angles, 3D volume rendering (VR) provides an intuitive understanding of the underlying data at once. 3D VR may play
an important complementary role in breast cancer diagnosis. Transfer functions (TFs) are a critical parameter in VR and
finding good TFs is a major challenge. The purpose of this work is to study a methodology to automatically generate TFs
that result in appropriate and useful VR visualizations of DBT data.
For intensity-based TFs, intensity histograms were used to study possible relationships between statistics and critical
intensity values in DBT data. The mean of each histogram has proved to be a valid option to automatically calculate
those critical values that define these functions. At this stage, eight visualizations were obtained by combining several
opacity/color intensity-based functions. Considering the gradient, ten visualizations were obtained. Nine of the ten TFs
were constructed considering the peaks of gradient magnitude histograms. The tenth function was a simple linear ramp.
Finally, three intensity-based and three gradient-based functions were selected and simultaneously used. This resulted in
nine final VR visualizations taking both information into account.
The studied approach allowed an automatic generation of opacity/color TFs based on scalar intensity and gradient
magnitude histograms. In this way, the preliminary results obtained with this methodology are very encouraging about
creating an adequate visualization of DBT data by VR
CHAPTER 13. MR-PET Measurement
The aim of this chapter is to consider the practical issues when combining two different imaging modalities. Starting with patient handling and measurement workflow, this chapter describes the factors that need to be considered in a hybrid environment. Ethical considerations need to take account of the potential risks associated with magnetic fields, as well as with ionising radiation. Incidental findings and data protection issues are also addressed, along with dose considerations, magnetic resonance safety, combined patient handling and measurement workflow. Finally, the ethical issues arising when operating in a hybrid environment and measuring simultaneously with two modalities are also considered
PET motion correction using PRESTO with ITK motion estimation
The Siemens BrainPET scanner is a hybrid MRI/PET system. PET images are prone to motion artefacts which degrade the image quality. Therefore, motion correction is essential. The library PRESTO converts motion-corrected LORs into highly accurate generic projection data [1], providing high-resolution PET images. ITK is an open-source software used for registering multidimensional data [2]. ITK provides motion estimation necessary to PREST