307 research outputs found
Spatial modelling of air pollution in urban areas with GIS: a case study on integrated database development
International audienceA wide range of data collected by monitoring systems and by mathematical and physical modelling can be managed in the frame of spatial models developed in GIS. In addition to data management and standard environmental analysis of air pollution, data from remote sensing (aerial and satellite images) can ehance all data sets. In spite of the fact that simulation of air pollutant distribution is carried out by standalone computer systems, the spatial database in the framework of the GIS is used to support decision-making processes in a more efficient way. Mostly, data are included in the map layers as attributes. Other map layers are carried out by the methods of spatial interpolation, raster algebra, and case oriented analysis. A series of extensions is built into the GIS to adapt its functionality. As examples, the spatial models of a flat urban area and a street canyon with extensive traffic polluted with NOx are constructed. Different scales of the spatial models require variable methods of construction, data management, and spatial data sources. The measurement of NOx and O3 by an automatic monitoring system and data from the differential absorption LIDAR are used for investigation of air pollution. Spatial data contain digital maps of both areas, complemented by digital elevation models. Environmental analyses represent spatial interpolations of air pollution that are displayed in horizontal and vertical planes. Case oriented analyses are mostly focused on risk assessment methods. Finally, the LIDAR monitoring results and the results obtained by modelling and spatial analyses are discussed in the context of environmental management of the urban areas. The spatial models and their extensions are developed in the framework of the ESRI's ArcGIS and ArcView programming tools. Aerial and satellite images preprocessed by the ERDAS Imagine represent areas of Prague
Medical device regulation and its impact on the industry: A case study of Czech companies
The implementation of regulations is often seen as a necessary tool to mitigate market failures and safeguard consumer interests. The Medical Device Regulation (MDR) is a recent regulation specifically designed for the production of medical devices, aiming to ensure their safety and effectiveness. This article focuses on Czech companies and seeks to examine and quantify the effects of the MDR on their operations, considering both economic and procedural impacts. Through the analysis of primary and secondary data, this study endeavors to shed light on the repercussions of the MDR on the companies in question. The findings suggest that the MDR will have a negative impact on the profitability of these companies, consequently influencing their operational strategies. One key factor contributing to this negative outcome is the inability of the companies to transfer the increased costs resulting from regulatory requirements to their customers. As a result, affected companies are forced to make adjustments to their product portfolios, reducing their range of offerings. The research reveals that the perception of the MDR among the companies is predominantly negative. This negative sentiment arises primarily due to the financial burdens imposed by the regulation and the other associated impacts discussed in the article. Furthermore, the MDR is not perceived as a catalyst for innovation within the industry. By quantifying the effects of the MDR on Czech companies, this article provides valuable insights into the real-world implications of this regulatory framework. The findings highlight the challenges faced by companies in adapting to and complying with the MDR, particularly in terms of its impact on profitability and product offerings. This research serves as a reminder of the complex interplay between regulations, economic outcomes, and industry dynamics. Ultimately, it emphasizes the importance of considering the potential ramifications of regulations and their effects on businesses and markets
THIN NITRIDE LAYERS AS PERMEATION BARRIERS
Permeation barriers represent one of the crucial fields in materials development for thermonuclear fusion. Primary objective of the barriers is to suppress the permeation of hydrogen isotopes (mainly tritium) from future thermonuclear fusion facilities. Secondary objective is to reduce hydrogen retention in structural materials, potentially also improving their corrosion resistance. Expected reactor conditions put high demands on the material, as well as on the final barrier quality. Key properties are tritium permeation reduction, absence of defects (especially cracks), high-temperature stability and corrosion resistance, and compatibility with structural materials (mostly ferritic-martensitic steels). Regarding industrial scale production, ability of the deposition method to coat large complex surfaces is desirable. Thin nitride layers, identified as promising permeation barriers, were prepared by diffusion-based nitridation and physical vapour deposition (PVD) and characterized
Recommended from our members
An Analytical Model to Predict and Minimize the Residual Stress of Laser Cladding Process
Laser Cladding is one of the advanced thermal techniques used to repair or modify the surface properties of high value components such as tools, military and aerospace parts. Tensile residual stresses are formed in the thermally treated area of this process. This work focuses on to find out key factors of formation and minimization of tensile residual stresses in dissimilar materials. In order to predict the tensile residual stress, one dimensional analytical model has been adopted. Four cladding materials (Al2O3, TiC, TiO2, ZrO2) on the H13 tool steel substrate and a range of preheating temperature of the substrate, from 300K to 1200K, have been investigated. The thermal strain and Young’s modulus are found as key factors of formation and minimization of residual stresses. Additionally, the investigation of preheating temperature of the substrate showed the reduction of residual stress with increasing the preheating temperature of the substrate
Extraction and Analysis of Impervious Surfaces Based on a Spectral Un-Mixing Method Using Pearl River Delta of China Landsat TM/ETM+ Imagery from 1998 to 2008
Impervious surface area (ISA) is considered as an indicator of environment change and is regarded as an important input parameter for hydrological cycle simulation, water management and area pollution assessment. The Pearl River Delta (PRD), the 3rd most important economic district of China, is chosen in this paper to extract the ISA information based on Landsat images of 1998, 2003 and 2008 by using a linear spectral un-mixing method and to monitor impervious surface change by analyzing the multi-temporal Landsat-derived fractional impervious surface. Results of this study were as follows: (1) the area of ISA in the PRD increased 79.09% from 1998 to 2003 and 26.88% from 2003 to 2008 separately; (2) the spatial distribution of ISA was described according to the 1998/2003 percentage respectively. Most of middle and high percentage ISA was located in northwestern and southeastern of the whole delta, and middle percentage ISA was mainly located in the city interior, high percentage ISA was mainly located in the suburban around the city accordingly; (3) the expanding direction and trend of high percentage ISA was discussed in order to understand the change of urban in this delta; High percentage ISA moved from inner city to edge of urban area during 1998–2003 and moved to the suburban area that far from the urban area mixed with jumpily and gradually during 2003–2008. According to the discussion of high percentage ISA spatial expanded direction, it could be found out that high percentage ISA moved outward from the centre line of Pearl River of the whole delta while a high ISA percentage in both shores of the Pearl River Estuary moved toward the Pearl River; (4) combining the change of ISA with social conditions, the driving relationship was analyzed in detail. It was evident that ISA percentage change had a deep relationship with the economic development of this region in the past ten years. Contemporaneous major sport events (16th Asia Games of Guangzhou, 26th Summer Universidad of Shenzhen) and the government policies also promoted the development of the ISA. Meanwhile, topographical features like the National Nature Reserve of China restricted and affected the expansion of the ISA. Above all, this paper attempted to extract ISA in a major region of the PRD; the temporal and spatial analyses to PRD ISA demonstrated the drastic changes in developed areas of China. These results were important and valuable for land use management, ecological protection and policy establishment
Size-dependent stability of ultra-small α-/β-phase tin nanocrystals synthesized by microplasma
Key features of tin, including electronic band structure and opto-electronic properties, are influenced by the crystal structure. Here the authors report a microplasma process for the synthesis of ultra-small tin nanocrystals in which the crystal structure is dependent on crystallite size
Residual stress and adhesion of thermal spray coatings: microscopic view by solidification and crystallisation analysis in the epitaxial CoNiCrAlY single splat
A new approach is proposed to achieve an in-depth understanding of crystallisation, residual stress and adhesion in epitaxial splats obtained by Combustion Flame Spray. Modelling of the fundamental process mechanisms is achieved with the help of experimental observations providing details with a sub-micrometre spatial resolution. At this scope, High Angular Resolution Electron Backscatter Diffraction and Transmission Electron Microscopy analysis are employed to provide insights into crystallisation and residual stress levels, while FIB-milled microcantilever beam bending is used for fracture strength measurements in the case of single splats. A comparison to fully-developed coatings is achieved by employing the X-ray Diffraction technique and pull-off methods for residual stress and fracture strength, respectively. The methodology is applied to metallic CoNiCrAlY material sprayed onto a Ni-based superalloy substrate. The establishment of different crystallisation regions: epitaxial and polycrystalline, is the result of variations in the heat flux direction at the solidification front. Significant dislocation density is also reported, indicating the relevance of impact dynamics and plastic deformation mechanisms. The comparison with fully-developed coatings suggests a reduction in inter-splat bonding at splat overlapping
- …