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Background
The majority of air pollution causes are originated from a direct impact of human activi-
ties, including the road vehicle use. Thus, transport, especially road traffic, is a major 
source of air pollution in most of the cases. Road traffic associated air pollution comes 
mainly from burning fossil fuels. The objective of this work is to improve the on-road air 
quality through the use of pollution data for the generation of recommendations to driv-
ers, in order to encourage them to take alternative paths while avoiding the most pol-
luted road segments (Namoun et al. 2013; Zahmatkesh et al. 2015).

In this paper, we propose the use of a traffic regulation and recommendation system 
able to establish the air quality indexes in urban areas, generates recommendations to 
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the users’ and indicate the right paths to drivers based on the calculated index and path 
properties, to both bypass the polluted paths and also avoid generating high levels of 
pollutants on the alternative paths of a road network. The problem is distributed geo-
graphically and highly dynamic from the fact that the air quality levels change over time 
and the exact number of users which demand recommendations and then the number of 
vehicles to redirect to alternative paths is unknown. To overcome this problem, we adopt 
the MAS paradigm (Sokolova and Fernandez-Caballero 2009; Ćirić et al. 2013), a set of 
algorithms over a distributed framework and Murena method (Murena 2004) to gener-
ate the required pollution indexes. The system calculates the pollution level and pro-
vides recommendations and vehicles rerouting plan to reassign the traffic flow in a way 
to ameliorate the on-road air quality. For the data analysis, we use an online analytical 
processing (OLAP) tool (Foster et al. 2005; Muhammad 2010). We also proposed the use 
of Dijkstra as a shortest path algorithm (Namoun et al. 2013; Zahmatkesh et al. 2015). 
This algorithm has been widely used in road management systems, with variations to 
improve its performance (Fan and Shi 2010).

In order to predict air pollution level near roads we use the available meteorological 
data and the gathered pollutants datasets in the ANN based modeling process. The pre-
diction results can be used to give the final users and the competent authorities more 
valuable recommendations. In this paper the case study focused on the ozone prediction.

Moreover, due to large amounts of data, the processing task has become a great chal-
lenge. To address this problem we suggest the use of the Hadoop framework to ensure 
a great flexibility and speed and make needed algorithms applicable to large scale data.

The proposed approach is illustrated over a few sections starting with a brief literature 
review followed by an overview of the proposed system and the road network modeling 
details in "Related works" and "The traffic regulation for air quality optimizing" sections. 
The data conceptual modeling is described in "Data conceptual modeling and imple-
menting" section. In  "ANN for air pollutant levels prediction" and "Data analysis pro-
cess" sections are devoted to the air pollutant levels prediction by using ANN and the 
MapReduce based data analysis process. Section "Path finding in the transport network" 
presents the weighted road network generation and the path finding process. In "The 
multi-agent architecture" section is dedicated to the multi-agent system description. In 
Case study and results" section a case study and the experimental results are presented, 
followed by a conclusion and perspectives in "Conclusion" section.

Related works
Multi-agent based systems have been considered as an efficient tool for large-scale sys-
tem such as intelligent traffic and air quality management (Jin and Jie 2012). The main 
task of such a system is to support road managers in traffic management tasks and ame-
liorate the on-road air quality. Many works propose the use of the MAS technology in 
traffic control and management systems, such as (Namoun et al. 2013) which propose 
an integrated approach for modeling transport infrastructure and optimizing transport 
in urban areas in order to reduce carbon-dioxide emissions. The authors have used an 
improved version of the Dijkstra algorithm as a graph search algorithm. This algorithm 
has a powerful potential to solve the problems of traffic congestion, which form a road 
network, which is the collection of graphs. The suggested solution combines the benefits 
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of a MAS and real time traffic information forecasting. Authors in (Ivo et al. 2011) have 
proposed the TraSMAPI platform that provides an integrated MAS framework which 
supports the communication between agents and manages the agents’ activity flow. It 
also provides a statistics module which is responsible for the data analysis and decision 
making. Sokolova and Fernandez in (Sokolova and Fernandez-Caballero 2009) have also 
presented an agent based decision support system for the environmental health impact 
assessment. The system architecture is divided into three levels: data gathering, data 
mining and decision making. The used data are gathered from multiple heterogeneous 
data sources (e.g. indexes of traffic). The analysis and design phases were made based on 
Prometheus methodology.

Many projects have also addressed the issue of air quality data integration; such as the 
Appetise project (Matejicek 2005), which the objective is to produce a pollution data-
base fed with data gathered from different sensors distributed over the study area. These 
data are combined with other related data like meteorological records and used in the 
spatial modeling and data analyzing process.

Machine learning tools such as ANN has been frequently used to predict air quality 
and pollution levels using a set of inputs, like pollutant concentrations, meteorological 
data and the available traffic information (Fontes et al. 2013; Ignacio et al. 2011). Moreo-
ver, many research works have been dedicated to implementing of such computationally 
expensive algorithms and analysis tasks on parallel or distributed computing systems 
such as Hadoop (Apache.org 2014). The use of such Big data tools can help enhancing 
the existing information systems and improving their performance (Zhao et  al. 2011). 
Das and Mohapatro (2014) have proposed a study on Hadoop’s MapReduce framework 
integration with data warehouses built using the traditional SQL based data warehous-
ing system. The aim is to benefit from the performance and the fast parallel processing 
power of these tools.

The traffic regulation for air quality optimizing
Overview

The Objective behind this system is to propose a solution for traffic regulation based 
on air quality, meteorological and contextual collected data. A set of algorithms is used 
over these data filtering systems that analyses data gathered from local station’s sensors 
and external data sources which contains other needed data (Meteorological parame-
ters, Geographical data and boundary conditions) and adds the intelligence of immedi-
ate contextual parameters which we can retrieve from users’ devices (e.g. Smartphone), 
such as time of day, location, speed, direction and weather. The resulting information 
will then be used to address the traffic regularization issue. As a result, users receive 
more relevant information and recommendations that are based on a combination of 
their historical preferences and contextual parameters.

Pollution data are collected from the on-road monitoring sensors and used to calculate 
an Atmospheric Pollution Index (API) (Murena 2004) which is used to determine the 
quality of air in a simple manner and provide information that can be understood by the 
general public. The API is based on hourly pollutant measurements comprising of Sul-
fur dioxide (SO2), Ozone (O3), Nitrogen dioxide (NO2), Atmospheric particulate matter 
(PM10) and Carbon monoxide (CO).
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Another important functionality of the system is the road graphs generation and 
calculation of each graph segments cost. The cost is then used to find the most envi-
ronment-friendly routes for a particular user. The Cost of each segment is determined 
by using a number of variables such as API value and the path segment lengths. Other 
persistent information about segments may also be taken into account (e.g. Number of 
lanes). In addition, the proposed system uses the gathered historical pollution data and 
meteorological records to predict the pollutant levels based on the use of ANN. Figure 1 
illustrates an overview of the system structuring.

The traffic regulation process

The traffic regulation and recommendation generation process is divided into the fol-
lowing steps (see Fig. 2):

• • The pollution and traffic data gathering.
• • The users contextual information integration.
• • The road network generation.
• • Data processing and the network weights calculation.
• • Applying the chosen shortest path algorithm.

Road network modeling

The traffic flow is the result of interaction between the transport demand and the trans-
port supply. The road network of the studied area represents the transport supply. It’s 
described by the road segments and its intersections. In this system we simulate the road 
segments for which physical properties are collected from urban and traffic management 
centers and delivered to the system. The gathered information, such as segment data is 
used in the weighted graph generation (Fig. 3).

Fig. 1  Overview of the proposed system components

Fig. 2  The traffic regulation and recommendation generation process
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The network is formalized by a planar graph, in which the roads are represented by a 
set of arcs and the junction points by nodes. Arcs can be characterized by features such 
as: Pollution level, length, traffic capacity and number of lanes. Nodes are associated 
with characteristics specific to intersections, such as: traffic direction, the type signaling, 
etc. The cartography is represented by a weighted graph G = (V, E) where V is a set of 
vertices representing and E = V × V is a set of edges e = (vi, vj). Each segment joining 
adjacent vertices is represented by either one or two directed edges. The edge weight wij 
between two vertices vi and vj is a dynamic factor, which is used in order to represent 
properties related to the edge (vi, vj). Figure 4 shows an example of road graph.

Data conceptual modeling and implementing
Over time, the available analysis data volumes reach critical sizes. For this, we proposed 
the use of Hadoop as a Big Data management tool. This solution has many advantages 
such as high flexibility and scalability. It also offers a cost effective storage solution and 
allow considering new approaches for data warehousing, especially from the multidi-
mensional data management point of view (Cuzzocrea et al. 2013).

Fig. 3  Road segment details (left) and an example of a road network (right)

Fig. 4  Example of a two directed edge based road graph
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In the other hand, a big amount of needed data is stored mainly in relational data-
bases which are based on the star schema (traditional data warehouses) (Dehdouh et al. 
2014). Hence our interest in this section in transforming the required relational concep-
tual model into a “Not only SQL” (NoSQL) schema and exactly into a column-oriented 
schema (Chevalier et  al. 2015); given that Hadoop HBase which is used in the devel-
opment process is a distributed column-oriented database. For this, we define a set of 
automatic mapping rules, translating from the relational conceptual level to the Hbase 
logical model.

In this work, all data have to be extracted and stored into the HBase. It is a database 
with high reliability, column storage, high performance and scalability and based on the 
Hadoop distributed file system (HDFS). Its goal is the hosting of very large tables with 
billions of rows and millions of columns atop clusters of commodity hardware (Apache.
org 2014).

As most of column-oriented databases, HBase is structured into a set of tables com-
posed of a set of rows and whose physical storage is organized by groups of columns 
called column families; a column family can contain a very large number of columns. For 
each row, a column exists if it contains a corresponding value. Through the HBase fea-
ture of column-oriented store and versioning, the time-series data sets are built based on 
the primary key Row-key and timestamp. Figure 5 depicts a Unified Modeling Language 
(UML) class diagram representing the column-oriented database components.

In this paper, the required pollution data conceptual model is presented as a star 
schema. This schema is composed of three dimensions (Time, Location and Pollutant) 
and a fact that represents the API records (Measure). Figure 6 illustrates the conceptual 
model.

The aim is defining a mapping between the relational star schema and the column-ori-
ented model. For this, each element of the conceptual model (Facts, dimensions, attrib-
utes, etc.), is transformed into the corresponding concept in the target model according 
to the following set of transformation rules:

• • Each Fact and its associated dimensions (Conceptual star schema), is transformed 
into a table.

• • Each Fact is transformed into a Column Family into the corresponding table (Table 
with the Fact name) and the fact measures are the column of this column family.

Fig. 5  Representation of column-oriented database concepts
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• • Each Dimension of the conceptual model is transformed into a column family in 
which the columns are the dimension attributes.

Figure 7 illustrates the relation between the two model concepts.

ANN for air pollutant levels prediction
The on road air pollution forecasting is performed by using ANN’s. ANN are mathe-
matical models inspired by the functioning of nervous systems, which are composed of 
a set of interconnected artificial neurons. These neurons can be associated in many dif-
ferent ways, depending on the characteristics of the issue to address. The air pollution 
prediction system is considered as a system that receives information from distinct set of 
inputs and produces a specific output (Russo et al. 2013).

The proposed network has been used for predicting pollutants concentration using a 
2 years data which contains hourly concentration of different pollutants and meteoro-
logical records. This prediction process is based on three stages. The data extracting 
stage, in which the objective is to define the most significant data for the learning phase. 
The second phase is learning stage. It aims to find the optimal configuration of hidden 
layers, the transfer function, and the performance index. The objective during this stage 
is to minimize the prediction error. The third stage is the prediction part in which we 
predict the pollutant concentration for a given time and location from a previously cali-
brated neural network during the learning phase.

Fig. 6  Example of the multidimensional conceptual schema

Fig. 7  The mapping between Multidimensional conceptual model and column-oriented model
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The Multilayer Perceptron (MLP) is an example of an artificial neural network that is 
used extensively for the solution of a number of different problems, including pattern 
recognition and interpolation. It can be seen as a function transforming the input space 
X into the output by processing every input signal by convenient weights into neurons 
located in the hidden layer, which transform the input by using specific activation func-
tions, considering also the bias (Zhang 2000). They recombine frequently in a linear way 
those hidden outputs by convenient weights and bias as shown below:

With bias vectors b(1) and b(2); weight matrices W (1) and W (2) and activation functions 
G and s.

Artificial neural network (MLP in our choice) models can treat multivariable prob-
lems. They have the aptitude to describe non-linear relationships such as that super-
vising ozone production. In this paper, we use ANN for modeling the ozone level 
by applying the artificial neural networks modeling. This method is widely available 
to extract those non-linear features of the relationship that a regression model might 
overlook. The ozone formation is a well-known phenomenon resulting from complex 
chemical reactions of nitrogen oxides and organic species in the presence of solar radia-
tion (Ozbay et al. 2011). Both precursor emissions and meteorological conditions have 
important roles in this formation mechanism. Thus, in the ozone modeling process we 
use a set of meteorological data in addition to pollutant data.

Data analysis process
The weighted graph generation and traffic regulation processes use a multi-phase 
MapReduce process to get emissions of various time resolutions on the different 
addressed road segments (Zhao et al. 2011). In the first MapReduce phase, the predicted 
and gathered monitoring data are loaded from the Hadoop HBase and used to calculate 
the pollution sub-indexes by applying the Murena method (Murena 2004). Geographi-
cal and Meteorological data are loaded in order to generate the final API in each road 
segment and recommendations for users. Meteorological data are also used in order to 
provide more information for road users. First, we perform a data cleaning process using 
a single MapReduce phase. In the second Map stage (see Fig. 8), we use the cleaned data 
set files to calculate the pollutant sub-indexes by applying the Murena method (Murena 
2004). At the same time we use the meteorological and the road network data to gener-
ate the final API for each road segment (Zhao et al. 2011; Fang et al. 2014). The interme-
diate results are stored into the output databases.

In the third Map phase (Fig. 9) the API vales are combined with users’ data and road 
segment’s data in order to generate the weighted network. The Map stage uses the pair 
of segment identifier, and timestamp as the key and the API as well as edge length as 
value. During this MapReduce stage the Dijkstra algorithm is applied in order to gener-
ate three shortest paths in response to each user query. In the Reduce phase, the paths 
with the same key are cumulated together.

(1)f (x) = G
(

b(2) +W (2)(s(b(1) +W (1)x))
)
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Path finding in the transport network
Weighted network generation

The weights of the network segments are calculated by combining the API records and 
the segment lengths. Murena method (Murena 2004) was adopted to calculate the API. 
The evaluation of the API at stations for a pollutant p (PIs,p) is carried out by a linear 
interpolation between the reference scale values reported in Table 1 and is given by:

where PIs,p, the value of the pollution index for a pollutant p at the site s; BPhi, the lowest 
break-point of a pollutant p that is greater than or equal to Cp; BPlo, the highest break-
point of a pollutant p that is lower than or equal to; PIhi, the PI value corresponding to 
BPhi; PIlo, the PI value corresponding to BPlo; Cp, the pollutant p daily concentration.

An individual score is assigned to the level of each pollutant and the final API index 
is equal to the highest sub-index determined for each of the considered pollutant. The 
other required road segments properties are prepared and stored in internal databases. 
The weights of the network are updated when new forecasts are available. In this case, 

(2)PIs,p =

[

PIhi − PIlo

BPhi − BPlo

(

Cp − BPlo
)

+ PIlo

]

s,p

Fig. 8  The second stage of the MapReduce process

Fig. 9  The third stage of the Map and Reduce process
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the system recalculates the API and dynamically updates the network with the new val-
ues. Otherwise the current weights are used to generate paths and recommendations.

Shortest path algorithm: Dijkstra

Path finding in weighted traffic networks is the process of searching for the shortest pos-
sible road between two points. The path is represented via a set of segments to browse 
from a start node to the destination node. The aim is to create a road network, where 
the weight of each segment is a combination of the different nature of the cost of using 
this particular segment. As in this work we are interested in the air quality optimizing 
by traffic regulation, we use the on-road calculated API values and the segment lengths 
(Namoun et al. 2013).

Using this weighted network the system can process user queries and generates rec-
ommendations and calculate potential routes according to the Dijkstra shortest path 
algorithm. For a particular source node, the algorithm finds the path with the lowest cost 
between that node and any other node. The used function for calculating the shortest 
path will depend on the road segment length and the calculated API for each path seg-
ment. Thus, the value of the path can be provided using the formula:

(3)Pi =

n
∑

i=0

Xi ×Wi

(4)Wi = (C1 × Ai + C2 × Li)/(C1 + C2)

Table 1  Breakpoints (µg/m3 for  all pollutants and  mg/m3 for  CO) for  the proposed API 
(Murena 2004)

Pollution level API PM10 NO2 CO SO2 O3

Unhealthy 85–100 238–500 950–1900 15.5–30 500–1000 223–500

Unhealthy for sensitive groups 70–85 144–238 400–950 11.6–15.5 250–500 180–223

Moderate pollution 50–70 50–144 200–400 10–11.6 125–250 120–180

Low pollution 25–50 20–50 40–200 4–10 20–125 65–120

Good quality 0–25 0–20 0–40 0–4 0–20 0–65

Fig. 10  The multi-agent air quality system for traffic regulation
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where, Xi is a configurable weight and Wi is the weight of the edge number i and n is 
the potential number of edges to browse. Ai and Li are successively the current API and 
length of the edge i. C1 and C2 are two coefficients related to each cost parameter. They 
can be controlled in order to optimize the weight calculation function. In this work we 
modify the Dijkstra’s shortest path algorithm to obtain three least polluted paths (short-
est paths) in order to allow users to make their own decisions based on the provided 
information and their own risk evaluation. The Dijkstra algorithm is implemented based 
on the use of the parallel breadth first search algorithm.

The multi‑agent architecture
In this work we represent the proposed system by using a multi-agent based architec-
ture. Thus, the system is composed of a group of autonomous agents which have the 
ability to set their own activities and goals and communicate via an interaction proto-
col in order to achieve the system main objective (Lavbic and Rupnik 2009). The main 
objective behind the use of MAS is to propose an adequate solution in terms of adapt-
ability, flexibility and agility. Figure 10 shows the multi-agent system structuring.

In the development process we chose to use the Prometheus methodology to design 
and implement the multi-agent system. Our choice is motivated by the efficiency of mes-
sage communication and lightweight nature of the framework. Prometheus methodol-
ogy (Lin et al. 2007) has been developed to support the complete software development 
lifecycle from problem description to implementation. It offers an environment for ana-
lyzing, designing, and developing heterogeneous multi-agent systems. This methodol-
ogy consists of three phases: System Specification, architectural design and the detailed 
design. The Prometheus Development tool is extended with the ability to generate skel-
eton code in the Java Agent Compiler and Kernel (JACK) agent-oriented programming 
language (AOS 2008) using the Prometheus Design Tool (PDT) code generator exten-
sion which maintains also synchronization between the generated code and the design 
when either of them changes.

The proposed system is composed of seven main agents: Station agents, Data provider 
agent, Model agent, Network agent, Managing agent, Users Data agent, and Analytics 
agent.

Station agents

The station agents are responsible for the continuous air quality measurements gather-
ing from the existing monitoring sensors in the study area. They are used also for data 
loading (to the managing agent) and data transformation and conversion of the hetero-
geneous retrieved data (e.g. XML files). The data provided by these different agents will 
allow a better understanding of the spatiotemporal evolution of air pollution.

Data provider agent

This agent is in charge of extracting data from external data sources and provides all 
required inputs for the managing and model agents. It sets up data sets of needed geo-
graphical data, meteorological data, emission data, etc. (Menut et al. 2013).
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Model agent

The objective of the model agent is the quantification of the evolution of pollutants 
according to time on road segments, taking into accounts all available data and param-
eters. This agent calculates and provides an average concentration over a surface (road 
network) based on the use of a set of equations. It uses a single Hadoop MapReduce 
phase (Fang et al. 2014) to calculate the API values using the pollutant concentrations. 
The API values are then used for the weighted road network generation. It’s also respon-
sible for the prediction of the air pollutant levels by using ANN. The modeling results are 
stored in an HBase.

Network agent

This agent is responsible of the road paths network generation and path finding in this 
weighted network by searching for the shortest possible route between two road nodes. 
The path is represented by a set of segments to browse from a source node to the desti-
nation node.

Managing agent

Responsible for the reliability of the whole system, and manages the operation of the 
individual agents, especially the station agents, model, data provider and network 
generation.

User’s data agent

This agent uses the user’s devices in order gather data concerning user’s location, traffic 
and road conditions using sensors readings (e.g. Accelerometer, GPS).

Analytics agent

The aim of the analytics agent is to enhance the value of both gathered and resulting data 
(pollutants concentrations, meteorological data, API values, graph details, etc.) by con-
verting them into a more valuable and intelligible information for final users. It applies a 
fast and effective analysis and creates recommendations for users. This agent integrates 
the OLAP tools features (for a fast analysis of multidimensional data) and data mining 
methods which are more suitable for large data sets processing (Muhammad 2010). The 
analytics agent performs needed analysis and reports the results back to the concerned 
entity (e.g. managing agent).

Agents’ interactions

The Managing agent ensures most communicative exchanges between the other system’s 
agents. The agents communicate based on a direct interaction mode, using structured 
messages. Such a service is provided by the FIPA-JACK extension which supports the 
FIPA Agent Communications Language (AOS 2008; Fernandez-Caballero and Gascuena 
2010). Figure 11, illustrates an overview of the different agents and their interactions.
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Case study and results
The study area

The study area used for the testing scenario in this work is located in Marrakech-City. 
This study area suffers from the effects of pollutants produced by vehicle exhaust sys-
tems. This study is based on a set of sensors that provide information and measures of 
the air pollutant concentration. It focused on air quality indexes related to the following 
pollutants: Sulfur Dioxide (SO2), Nitrogen dioxides (NO2), Carbon Monoxide (CO), Par-
ticulate Matter, and Ozone (O3). The map used for the testing scenario in this paper was 
cut in order to reduce the simulation time and the area considered in the simulations is 
represented in Fig. 12.

Experimental data

In our experiments, we used datasets issued from different near-road air quality mon-
itoring stations (during 2009 and 2010). The data records have hourly frequency. The 
available records for each monitoring station are variable due to the sensors deficient 
time. Each record contains 11 attribute: The five pollutants concentration (SO2, O3, NO2, 
PM10 and CO), solar radiation, Wind speed, Temperature (Celsius), Humidity ratio, 
Date and Time.

API values generation

The system generates the analysis queries based on selected options from an easy to use 
user interface to get the resulting API. Figure  13 shows an example of a query result 
which allows selecting the API during May 2010 in a selected location from the study 
area.

Least polluted path finding

In the implemented system prototype, the road graph is generated in a specific location 
in the study area. For each segment in this location the system calculates or updates the 
weight (w) which is based on the API and paths length. The Dijkstra algorithm is then 

Fig. 11  General architecture of the agent’s framework
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applied in order to obtain the less polluted paths. The system generates then the suit-
able recommendations for the road network users and competent authorities. Figure 14 
describes a road network example, in which a user wants to navigate from v1 to v9. An 
example of the resulting shortest path is presented in Fig. 15 (Screenshot of the output).

The ozone level prediction

In this study, we used a three-layer perceptron ANN model (see Fig. 16) to predict the 
Ozone concentrations which are influenced by the meteorological conditions, especially 
temperature and solar radiation; Furthermore, the Ozone formation depends also on the 

Fig. 12  Inset map of an area of Marrakech—Morocco used for simulations (by Google Maps)
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Fig. 13  The pollution index in three segments in the simulation area

Fig. 14  Part of the study area weighted road graph

Fig. 15  The resulting shortest path (Screenshot)
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NO2, PM10 and CO levels in the atmosphere (Ozbay et al. 2011). Thus The input param-
eters for ozone prediction (first layer) by MLP method are NO2, CO, PM10, the relative 
humidity (RH), the wind speed (WS), the temperature (T) (Temperature records are not 
available for dawdiat station) and the solar radiation (SR). The number of hidden lay-
ers and neurons in each hidden layer (second layer) are the parameters to choose in the 
model construction.

The last layer is the output, which consists of the target of the prediction model (O3 in 
this case study). A two-year dataset was divided into two parts: 80 % used for training 
the networks and the remaining 20 % employed in testing the networks.

In our case, we tested different configuration and we found that the best architecture 
was a fully connected configuration, linear output layer and logistic as activation func-
tions with one hidden layer and the following hidden neurons (Table 2):

The following Fig. 16 illustrates the ANN configuration (for Dawdiat station):
After selecting the most suitable configuration from the tenfold cross validation pro-

cess it will be possible to determine the model fitness (by using training data) by calcu-
lating the adjusted coefficient of determination R2. The MLP model fitness is presented 
in Table 3.

Fig. 16  The three-layer ANN configuration (for Dawdiat station)

Table 2  Number of hidden neurons for the MLP architecture

Station Dataset

Dawdiat (6-X-1) 4

Mhamid (7-X-1) 19

JEF (7-X-1) 13
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Figure 17, shows the scatter plot of the predicted ozone concentrations versus the cor-
responding observed values in dawdiat station.

Conclusion
We have, through this paper presented the implementation of an air quality system for 
recommendation and traffic regulation by using distributed data gathered from different 
air quality monitoring stations and other contextual data. The data gathering and analy-
sis process is based on the use of Big data tools to ensure a fast data loading, fast query 
processing and an efficient storage. In this work we also proposed the use of a multi-
agent framework to represent the system components. The case study addresses the gen-
eration of the air pollution indexes on a specific road network and the prediction of the 
ozone level. These pollution indexes are then used in order to calculate the best route 
users can borrow. Our experimental results show that the data processing operations 
and the Dijkstra algorithm deployed in the large-scale data processing system are feasi-
ble and efficient. The perspectives of this work concern the use of multi-criteria decision 
support tools, the integration of traffic data in order to evaluate the system effectiveness 
regarding the reduction of the pollution level and the evaluation of the system perfor-
mance when dealing with a larger amount of data.

Table 3  The Coefficient of determination R2 for the ANN

Station Dataset

Dawdiat 0.526

Mhamid 0.532

JEF 0.672

Fig. 17  Predicted O3 by the MLP model against its measurements (Dawdiat station)
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Compiler and Kernel; MAS: multi-agent systems; MLP: multilayer perceptron; NO2: nitrogen dioxide; NoSQL: not only 
SQL; O3: ozone; OLAP: online analytical processing; PDT: prometheus design tool; PI: pollution index; PM10: atmospheric 
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