214 research outputs found

    Accessible opera : overcoming linguistic and sensorial barriers

    Get PDF
    The desire to make media available for all has been rapidly accepted and implemented by most European countries. Opera, as one of the many audiovisual representations, also falls under the category of production which needs to be made accessible and this article aims to analyse how opera has gone through a complete transformation to become a cultural event for all, overcoming not only linguistic but also sensorial barriers. The first part of the article analyses the various forms of translation associated with opera and the main challenges they entail. The second presents different systems used to make opera accessible to the sensorially challenged, highlighting their main difficulties. Examples from research carried out at the Barcelona's Liceu opera house are presented to illustrate various modalities, especially audio description. All in all, it is our aim to show how translated-related processes have made it possible to open opera to a wider audience despite some initial reluctance

    Hydration free energies in the FreeSolv database calculated with polarized iterative Hirshfeld charges

    Get PDF
    Computer simulations of biomolecular systems often use force fields, which are combinations of simple empirical atom-based functions to describe the molecular interactions. Even though polarizable force fields give a more detailed description of intermolecular interactions, nonpolarizable force fields, developed several decades ago, are often still preferred because of their reduced computation cost. Electrostatic interactions play a major role in biomolecular systems and are therein described by atomic point charges. In this work, we address the performance of different atomic charges to reproduce experimental hydration free energies in the FreeSolv database in combination with the GAFF force field. Atomic charges were calculated by two atoms-in-molecules approaches, Hirshfeld-I and Minimal Basis Iterative Stockholder (MBIS). To account for polarization effects, the charges were derived from the solute’s electron density computed with an implicit solvent model, and the energy required to polarize the solute was added to the free energy cycle. The calculated hydration free energies were analyzed with an error model, revealing systematic errors associated with specific functional groups or chemical elements. The best agreement with the experimental data is observed for the AM1-BCC and the MBIS atomic charge methods. The latter includes the solvent polarization and presents a root-mean-square error of 2.0 kcal mol–1 for the 613 organic molecules studied. The largest deviation was observed for phosphorus-containing molecules and the molecules with amide, ester and amine functional groups

    Evolution of massive stars with new hydrodynamic wind models

    Full text link
    Here we present evolutionary models for a set of massive stars, introducing a new prescription for the mass-loss rate obtained from hydrodynamical calculations in which the wind velocity profile, v(r)v(r), and the line-acceleration, glineg_\text{line}, are obtained in a self consistently way. Replacing mass-loss rates at the Main Sequence stage from the standard Vink's formula by our new recipe, we generate a new set of evolutionary tracks for MZAMS=25,40,70M_\text{ZAMS}=25,40,70 and 120M120\,M_\odot and metallicities Z=0.014Z=0.014 (Galactic), Z=0.006Z=0.006 (LMC), and Z=0.002Z=0.002 (SMC). Our new derived formula for mass-loss rate predicts a dependence M˙Za\dot M\propto Z^a, where aa is not longer constant but dependent on the stellar mass: ranging from a0.53a\sim0.53 when M120  MM_*\sim120\;M_\odot, to a1.02a\sim1.02 when M25  MM_*\sim25\;M_\odot. We found that models adopting the new recipe for M˙\dot M retain more mass during their evolution, which is expressed in larger radii and consequently more luminous tracks over the Hertzsprung-Russell diagram. These differences are more prominent for the cases of MZAMS=70M_\text{ZAMS}=70 and 120 MM_\odot at solar metallicity, where we found self-consistent tracks are 0.1\sim0.1 dex brighter and keep extra mass up to 20 MM_\odot, compared with the classical models using the previous formulation for mass-loss rate. Moreover, we observed remarkable differences for the evolution of the radionuclide isotope 26^{26}Al in the core and the surface of the star. Since M˙sc\dot M_\text{sc} are weaker than the commonly adopted values for evolutionary tracks, self-consistent tracks predict a later modification in the abundance number of 26^{26}Al in the stellar winds. This new behaviour could provide useful information about the real contribution of this isotope from massive stars to the Galactic interstellar medium.Comment: Accepted for publication in Astronomy & Astrophysic

    Automatic quantification of cardiomyocyte dimensions and connexin 43 lateralization in fluorescence images

    Get PDF
    Cardiomyocytes’ geometry and connexin 43 (CX43) amount and distribution are structural features that play a pivotal role in electrical conduction. Their quantitative assessment is of high interest in the study of arrhythmias, but it is usually hampered by the lack of automatic tools. In this work, we propose a software algorithm (Myocyte Automatic Retrieval and Tissue Analyzer, MARTA) to automatically detect myocytes from fluorescent microscopy images of cardiac tissue, measure their morphological features and evaluate the expression of CX43 and its degree of lateralization. The proposed software is based on the generation of cell masks, contouring of individual cells, enclosing of cells in minimum area rectangles and splitting of these rectangles into end-to-end and middle compartments to estimate CX43 lateral-to-total ratio. Application to human ventricular tissue images shows that mean differences between automatic and manual methods in terms of cardiomyocyte length and width are below 4 µm. The percentage of lateral CX43 also agrees between automatic and manual evaluation, with the interquartile range approximately covering from 3% to 30% in both cases. MARTA is not limited by fiber orientation and has an optimized speed by using contour filtering, which makes it run hundreds of times faster than a trained expert. Developed for CX43 studies in the left ventricle, MARTA is a flexible tool applicable to morphometric and lateralization studies of other markers in any heart chamber or even skeletal muscle. This open-access software is available online

    Analysis of age-related left ventricular collagen remodeling in living donors: Implications in arrhythmogenesis

    Get PDF
    Age-related fibrosis in the left ventricle (LV) has been mainly studied in animals by assessing collagen content. Using second-harmonic generation microscopy and image processing, we evaluated amount, aggregation and spatial distribution of LV collagen in young to old pigs, and middle-age and elder living donors. All collagen features increased when comparing adult and old pigs with young ones, but not when comparing adult with old pigs or middle-age with elder individuals. Remarkably, all collagen parameters strongly correlated with lipofuscin, a biological age marker, in humans. By building patient-specific models of human ventricular tissue electrophysiology, we confirmed that amount and organization of fibrosis modulated arrhythmia vulnerability, and that distribution should be accounted for arrhythmia risk assessment. In conclusion, we characterize the age-associated changes in LV collagen and its potential implications for ventricular arrhythmia development. Consistency between pig and human results substantiate the pig as a relevant model of age-related LV collagen dynamics. © 2022 The Author(s

    An interlaboratory comparison of mid-infrared spectra acquisition: Instruments and procedures matter

    Get PDF
    Diffuse reflectance spectroscopy has been extensively employed to deliver timely and cost-effective predictions of a number of soil properties. However, although several soil spectral laboratories have been established worldwide, the distinct characteristics of instruments and operations still hamper further integration and interoperability across mid-infrared (MIR) soil spectral libraries. In this study, we conducted a large-scale ring trial experiment to understand the lab-to-lab variability of multiple MIR instruments. By developing a systematic evaluation of different mathematical treatments with modeling algorithms, including regular preprocessing and spectral standardization, we quantified and evaluated instruments' dissimilarity and how this impacts internal and shared model performance. We found that all instruments delivered good predictions when calibrated internally using the same instruments' characteristics and standard operating procedures by solely relying on regular spectral preprocessing that accounts for light scattering and multiplicative/additive effects, e.g., using standard normal variate (SNV). When performing model transfer from a large public library (the USDA NSSC-KSSL MIR library) to secondary instruments, good performance was also achieved by regular preprocessing (e.g., SNV) if both instruments shared the same manufacturer. However, significant differences between the KSSL MIR library and contrasting ring trial instruments responses were evident and confirmed by a semi-unsupervised spectral clustering. For heavily contrasting setups, spectral standardization was necessary before transferring prediction models. Non-linear model types like Cubist and memory-based learning delivered more precise estimates because they seemed to be less sensitive to spectral variations than global partial least square regression. In summary, the results from this study can assist new laboratories in building spectroscopy capacity utilizing existing MIR spectral libraries and support the recent global efforts to make soil spectroscopy universally accessible with centralized or shared operating procedures

    The Roadmap to the POEMMA mission

    Get PDF
    The Probe Of Extreme Multi-Messenger Astrophysics (POEMMA) is designed to observe ultrahigh-energy cosmic rays (UHECRs) and cosmic neutrinos from space with sensitivity over the full celestial sky. Developed as a NASA Astrophysics Probe-class mission, POEMMA consists of two identical telescopes orbiting the Earth in a loose formation designed to observe extensive air showers (EAS) via air fluorescence and Cherenkov emissions. UHECRs and UHE neutrinos above 20 EeV are observed with the stereo fluorescence technique, while tau neutrinos above 20 PeV are observed via the optical Cherenkov signals produced by up-going EAS generated by the decay of Earth-emerging tau-leptons. The POEMMA satellites are designed to quickly re-orientate to follow up transient cosmic neutrino candidate sources and obtain unparalleled neutrino flux sensitivity. Both observation techniques and the instrument design are being validated by current and upcoming missions, such as Mini-EUSO and EUSO-SPB as part of the JEM-EUSO program, and the Terzina instrument onboard the NUSES SmallSat mission. We discuss the POEMMA science performance and the current roadmap to the POEMMA mission

    Mutation Screening of Multiple Genes in Spanish Patients with Autosomal Recessive Retinitis Pigmentosa by Targeted Resequencing

    Get PDF
    Retinitis Pigmentosa (RP) is a heterogeneous group of inherited retinal dystrophies characterised ultimately by the loss of photoreceptor cells. RP is the leading cause of visual loss in individuals younger than 60 years, with a prevalence of about 1 in 4000. The molecular genetic diagnosis of autosomal recessive RP (arRP) is challenging due to the large genetic and clinical heterogeneity. Traditional methods for sequencing arRP genes are often laborious and not easily available and a screening technique that enables the rapid detection of the genetic cause would be very helpful in the clinical practice. The goal of this study was to develop and apply microarray-based resequencing technology capable of detecting both known and novel mutations on a single high-throughput platform. Hence, the coding regions and exon/intron boundaries of 16 arRP genes were resequenced using microarrays in 102 Spanish patients with clinical diagnosis of arRP. All the detected variations were confirmed by direct sequencing and potential pathogenicity was assessed by functional predictions and frequency in controls. For validation purposes 4 positive controls for variants consisting of previously identified changes were hybridized on the array. As a result of the screening, we detected 44 variants, of which 15 are very likely pathogenic detected in 14 arRP families (14%). Finally, the design of this array can easily be transformed in an equivalent diagnostic system based on targeted enrichment followed by next generation sequencing
    corecore