719 research outputs found

    Distances between composition operators

    Get PDF
    The norm distance between two composition operators is calculated in select cases

    Economic importance of ensuring the welfare for farm pigs

    Full text link
    Lately it speaks a lot about ensuring animal welfare and about the influence of the environment on life and on animal performance. Pig farming depends heavily on the environment because pigs needs all the elements for the comfort (enough space for sleep and movement, enough food depending on nutritional requirements for the animal category, water ad libitum, and health insurance) for growth and to deposit bonus. When these needs are not respected, pigs begin to lose weight and that affect the production and the economic efficiency of the farm. The purpose of this study is to provide necessary information that have an important influence on the production and on the economic efficiency of the farm when animal requirements are not met, but also to known and combating stress factors. The material is addressed to farmers and both to those who want to set up a pig farm

    Similar impact of topological and dynamic noise on complex patterns

    Full text link
    Shortcuts in a regular architecture affect the information transport through the system due to the severe decrease in average path length. A fundamental new perspective in terms of pattern formation is the destabilizing effect of topological perturbations by processing distant uncorrelated information, similarly to stochastic noise. We study the functional coincidence of rewiring and noisy communication on patterns of binary cellular automata.Comment: 8 pages, 7 figures. To be published in Physics Letters

    Logical Reduction of Biological Networks to Their Most Determinative Components

    Get PDF
    Boolean networks have been widely used as models for gene regulatory networks, signal transduction networks, or neural networks, among many others. One of the main difficulties in analyzing the dynamics of a Boolean network and its sensitivity to perturbations or mutations is the fact that it grows exponentially with the number of nodes. Therefore, various approaches for simplifying the computations and reducing the network to a subset of relevant nodes have been proposed in the past few years. We consider a recently introduced method for reducing a Boolean network to its most determinative nodes that yield the highest information gain. The determinative power of a node is obtained by a summation of all mutual information quantities over all nodes having the chosen node as a common input, thus representing a measure of information gain obtained by the knowledge of the node under consideration. The determinative power of nodes has been considered in the literature under the assumption that the inputs are independent in which case one can use the Bahadur orthonormal basis. In this article, we relax that assumption and use a standard orthonormal basis instead. We use techniques of Hilbert space operators and harmonic analysis to generate formulas for the sensitivity to perturbations of nodes, quantified by the notions of influence, average sensitivity, and strength. Since we work on finite-dimensional spaces, our formulas and estimates can be and are formulated in plain matrix algebra terminology. We analyze the determinative power of nodes for a Boolean model of a signal transduction network of a generic fibroblast cell. We also show the similarities and differences induced by the alternative complete orthonormal basis used. Among the similarities, we mention the fact that the knowledge of the states of the most determinative nodes reduces the entropy or uncertainty of the overall network significantly. In a special case, we obtain a stronger result than in previous works, showing that a large information gain from a set of input nodes generates increased sensitivity to perturbations of those inputs

    Queuing Systems with Multiple FBM-Based Traffic Models

    Get PDF
    A multiple fractional Brownian motion (FBM)-based traffic model is considered. Various lower bounds for the overflow probability of the associated queueing system are obtained. Based on a probabilistic bound for the busy period of an ATM queueing system associated with a multiple FBM-based input traffic, a minimal dynamic buffer allocation function (DBAF) is obtained and a DBAF-allocation algorithm is designed. The purpose is to create an upper bound for the queueing system associated with the traffic. This upper bound, called a DBAF, is a function of time, dynamically bouncing with the traffic. An envelope process associated with the multiple FBM-based traffic model is introduced and used to estimate the queue size of the queueing system associated with that traffic model

    Boundedness, compactness and Schatten-class membership of weighted composition operators

    Full text link
    The boundedness and compactness of weighted composition operators on the Hardy space H2{\mathcal H}^2 of the unit disc is analysed. Particular reference is made to the case when the self-map of the disc is an inner function. Schatten-class membership is also considered; as a result, stronger forms of the two main results of a recent paper of Gunatillake are derived. Finally, weighted composition operators on weighted Bergman spaces A2α(D)\mathcal{A}^2 \alpha(\mathbb{D}) are considered, and the results of Harper and Smith, linking their properties to those of Carleson embeddings, are extended to this situation.Comment: 12 page

    Hilbert Spaces Induced by Toeplitz Covariance Kernels

    Get PDF
    This is a book chapter that appeared in Stochastic Theory and Control by Bozenna Pasik-Duncan (ed.). This volume contains almost all of the papers that were presented at the Workshop on Stochastic Theory and Control that was held at the Univ- sity of Kansas, 18–20 October 2001. This three-day event gathered a group of leading scholars in the ?eld of stochastic theory and control to discuss leading-edge topics of stochastic control, which include risk sensitive control, adaptive control, mathematics of ?nance, estimation, identi?cation, optimal control, nonlinear ?ltering, stochastic di?erential equations, stochastic p- tial di?erential equations, and stochastic theory and its applications. The workshop provided an opportunity for many stochastic control researchers to network and discuss cutting-edge technologies and applications, teaching and future directions of stochastic control. Furthermore, the workshop focused on promoting control theory, in particular stochastic control, and it promoted collaborative initiatives in stochastic theory and control and stochastic c- trol education. The lecture on “Adaptation of Real-Time Seizure Detection Algorithm” was videotaped by the PBS. Participants of the workshop have been involved in contributing to the documentary being ?lmed by PBS which highlights the extraordinary work on “Math, Medicine and the Mind: Discovering Tre- ments for Epilepsy” that examines the e?orts of the multidisciplinary team on which several of the participants of the workshop have been working for many years to solve one of the world’s most dramatic neurological conditions. Invited high school teachers of Math and Science were among the part- ipants of this professional meeting.https://digitalcommons.unomaha.edu/facultybooks/1324/thumbnail.jp

    Stable Generalized Finite Element Method (SGFEM)

    Get PDF
    The Generalized Finite Element Method (GFEM) is a Partition of Unity Method (PUM), where the trial space of standard Finite Element Method (FEM) is augmented with non-polynomial shape functions with compact support. These shape functions, which are also known as the enrichments, mimic the local behavior of the unknown solution of the underlying variational problem. GFEM has been successfully used to solve a variety of problems with complicated features and microstructure. However, the stiffness matrix of GFEM is badly conditioned (much worse compared to the standard FEM) and there could be a severe loss of accuracy in the computed solution of the associated linear system. In this paper, we address this issue and propose a modification of the GFEM, referred to as the Stable GFEM (SGFEM). We show that the conditioning of the stiffness matrix of SGFEM is not worse than that of the standard FEM. Moreover, SGFEM is very robust with respect to the parameters of the enrichments. We show these features of SGFEM on several examples.Comment: 51 pages, 4 figure

    On the sensitivity to noise of a Boolean function

    Get PDF
    In this paper we generate upper and lower bounds for the sensitivity to noise of a Boolean function using relaxed assumptions on input choices and noise. The robustness of a Boolean network to noisy inputs is related to the average sensitivity of that function. The average sensitivity measures how sensitive to changes in the inputs the output of the function is. The average sensitivity of Boolean functions can indicate whether a specific random Boolean network constructed from those functions is ordered, chaotic, or in critical phase. We give an exact formula relating the sensitivity to noise and the average sensitivity of a Boolean function. The analytic approach is supplemented by numerical results that illustrate the overall behavior of the sensitivities as various Boolean functions are considered. It is observed that, for certain parameter combinations, the upper estimates in this paper are sharper than other estimates in the literature and that the lower estimates are very close to the actual values of the sensitivity to noise of the selected Boolean functions

    When is the numerical range of a nilpotent matrix circular?

    Get PDF
    The problem formulated in the title is investigated. The case of nilpotent matrices of size at most 4 allows a unitary treatment. The numerical range of a nilpotent matrix M of size at most 4 is circular if and only if the traces tr M∗M2 and tr M∗M3 are null. The situation becomes more complicated as soon as the size is 5. The conditions under which a 5×5nilpotent matrix has circular numerical range are thoroughly discussed
    corecore