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This supplementary material contains further information on some of the topics
contained in the paper, as well as some proofs. All labels and formula numbers
refer to the corresponding ones in the main manuscript.

1. Computational aspects

This section is related to the last part of Section 2 of the paper. We recall all
relevant information from the paper.

Now let us turn to the computational aspects of formulas (14) and (18). Recall
that, if ki is the connectivity of node i, we need i × ki × 22ki “for loops” for
computing formula (14) in Matlab, while for formula (18) there are only i × ki
loops which is clearly a much smaller number (no parallel computing is used).
To assess graphically the magnitude of the differences, we measure the CPU time
needed to compute influences for the nodes of a given network by the two formulas.
We do this for identical sub-networks of increasing sizes, to determine the impact
of the network size.

Recall that the network under consideration is the signal transduction network
of a generic fibroblast cell which consists of several main signaling pathways, includ-
ing the receptor tyrosine kinase, the G-protein coupled receptor, and the integrin
signaling pathway.

For our purposes, we generate sub-networks of increasing sizes by simply adding
nodes in alphabetic order. Thus we measure the CPU time and plot it against
the network size in the top panel of Figure 1. We also compute the corresponding
average and maximum connectivities for each network scenario, and plot them
against the networks size in the bottom panel of Figure 1. We note that with
formula (14), labeled as “Formula 1” in the figure, it is prohibitive to consider
connectivities greater than 10, since the CPU time increases exponentially, as seen
in both panels around network size 16, while the situation is totally different for
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formula (18), labeled as “Formula 2”, which yields significantly lower CPU times.
The CPU time “explodes” once the maximum connectivity reaches 10 for formula
(14).

Using formula (18) we could actually keep increasing the sub-network sizes until
we reach the full network without worrying about connectivity. We plot the results
in Figure 2 where we note the linear increase of the CPU time with network size.
Thus we conclude that formula (18) is significantly more computationally efficient
than formula (14).
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Figure 1. Top panel: CPU time (in seconds) computed with formula (14), labeled
as “Formula 1”, and with formula (18), labeled as “Formula 2”, plotted against increasing
networks size. Bottom panel: the corresponding average and maximum connectivity in the
sub-networks of the given sizes. Due to computational limitations, the maximum network
size is 18 and the maximum connectivity 10.

2. Statistical analysis

This section is related to Section 3 of the paper. We recall the information from
the manuscript with related figures.

We have conducted a statistical analysis related to DP and σ values for the
fibroblast network. In summary, there is enough statistical evidence that the average
DP-σ is negative with a p-value of basically zero. The paired test gives an upper
bound of −0.14208 for a 95% confidence interval for the difference DP−σ. On the
other hand a linear regression analysis indicates a fairly strong linear relationship
between the two variables with a 75.1% coefficient of determination (COD), Figure
4, and a higher COD of 82.4% for the linear relationship between the average σ and
the number of outlinks corresponding to the nodes, Figure 5. The average values
are computed over all nodes with a given number of outlinks. This relationship
is weaker for average DP versus number of outlinks with a COD of 60.3%, Figure
6. We also note that the outliers occur mostly for nodes with a larger number of
outlinks. In other words, fewer outlinks generate a stronger correlation between
the DP or σ and the number of outlinks.
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Figure 2. Top panel: CPU time (in seconds) computed with formula (18), labeled as
“Formula 2”, plotted against increasing networks size. Bottom panel: the corresponding
average and maximum connectivity in the sub-networks of the given sizes. Due to the
computational efficiency of the formula, the network size is increased to the maximum
possible of 130, and the maximum connectivity is 14, as indicated in the description of the
fibroblast network.

For example, there is one particular node in the network, namely EGFR, that
generates the maximum DP and is the only node with 13 outlinks. If we eliminate
this node from the correlation analysis, the COD for average DP versus outlinks
increases from 60.3% to 81.3%. Notably, mutations of the EGFR, epidermal growth
factor receptor, are known to be related to lung cancer, interfering with the signaling
pathways within the cell triggered to promote cell growth and division (prolifera-
tion) and cell survival. The second node in the order of DP is ASK1, apoptosis
signal-regulating kinase 1, and plays important roles in many stress-related dis-
eases, including cancer, diabetes, cardiovascular and neurodegenerative diseases.
The third node is Src, proto-oncogene tyrosine-protein kinase, is involved in the
control of many functions, including cell adhesion, growth, movement and differen-
tiation. The fourth node is PIP3 345, Phosphatidylinositol (3,4,5)-trisphosphate,
that functions to activate downstream signaling components, while the fifth node
is PKC, protein kinase C, involved in receptor desensitization, in modulating mem-
brane structure events, in regulating transcription, in mediating immune responses,
in regulating cell growth, and in learning and memory. The DP procedure man-
aged to capture the importance of these nodes in relationship to the rest of the
network. Four of the top five DP nodes, are also among the five strongest nodes
which are: Src, PIP3 345, PKC, PIP2 45, and EGFR. Thus, the strength also
captures biologically important nodes.

Moreover, higher DP and strength values are correlated with a larger number
of outlinks as seen from the figures, which means that this procedure can identify
hubs in the network. It is also apparent from the figures that the COD increases
when considering smaller DP and σ values.
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Figure 3. Boxplot for the DP-σ. The statistical test on paired means indicates that
there is enough evidence that the mean of DP -σ is negative with a p-value of basically

zero.

3. Special cases for the inequality on MI and influence

This section is related to the last part of Section 3 of the paper. We recall all
relevant information from the paper.

We conjecture that the following inequality is true for all choices of parameters

(37) h

(
K

2n

)
− 1

2|A|

∑
ωA∈Ω|A|

h

(
KωA

2n−|A|

)
≤

K|A| −
∑

j∈A mj

2n−1
.

A general proof of this inequality seems to be very technical and intricate as can
be seen in the next few cases. Note that the extreme cases of K = 0 and K = 2n

are trivially satisfied since they lead to null quantities on both sides of inequality
(37).

Case 1: The support is a singleton.

The inequality (37) takes on the particular form

(38) h

(
1

2n

)
− 1

2k
h

(
1

2n−k

)
≤ k

2n−1

where |A| = k.
It is our aim to prove that

(39) 0 ≤ h(x)

2k
+

kx

2k−1
− h

( x

2k

)
0 ≤ x ≤ 1.

As one can see, once (39) is proved, substitution of x by 1/2n−k in (39) leads to
(38). Using calculus methods, denote

F (x) =
h(x)

2k
+

kx

2k−1
− h

( x

2k

)
0 ≤ x ≤ 1.

The equation F ′(x) = 0 is equivalent to

k

2k−1
=

ln
(

2k−x
1−x

)
2k ln 2

which has the solution

xk =
4k − 2k

4k − 1
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Figure 4. Linear regression fit for DP versus σ. Note that most outliers occur for
larger values of DP and σ.

Figure 5. Linear regression fit for average σ versus number of outlinks (averages over
all available nodes with each given number of outlinks).

Figure 6. Linear regression fit for average DP versus number of outlinks (averages
over all available nodes with each given number of outlinks). Upon elimination of the
outlier corresponding to 13 outlinks, the coefficient of determination becomes 81.3%.

and it is easy to see that F ′ > 0 on interval (0, xk), and F ′ < 0 on interval (xk, 1).
Thus F increases from F (0) = 0 to F (xk), then decreases from F (xk) to F (1), and
so, if we prove F (1) ≥ 0, one gets F (x) ≥ 0, 0 ≤ x ≤ 1, that is (39) holds.

To finish, note that the inequality F (1) ≥ 0 is equivalent to

(40) h

(
1

2k

)
≤ k

2k−1

which is the particular form of (38) when n = k.
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It is straightforward to show that the inequality (40) is equivalent to

(41) k − log2(2
k − 1) ≤ k

2k − 1
.

Denoting x = 2k − 1, note that k − log2(2
k − 1) = log2(x + 1) − log2 x = 1

c ln 2
for some x < c < x+ 1, by the mean value theorem. Thus

k − log2(2
k − 1) ≤ 1

x ln 2
=

1

ln 2(2k − 1)
≤ k

2k − 1
, k ≥ 1

ln 2

so the inequality (41) holds for k = 2, 3, . . . . It also holds for k = 1, since in that
case, it simplifies to 1 ≤ 1.

One obtains the following consequence of the above estimates, which is valid no
matter the cardinality of suppf :

Corollary 1. Inequality (37) holds if |PrA(suppf)| = 1.

Indeed, in that case KωA
is null for all but one value of ωA. If PrA(suppf) = ωA,

then KωA = K. Thus, the inequality becomes

(42) h

(
K

2n

)
− 1

2k
h

(
K

2n−k

)
≤ Kk

2n−1
.

Indeed mj = 0 for all j ∈ A, in our case. Note that K ≤ 2n−k. Letting x = K/2n−k

in (39) one obtains (42).

Case 2: suppf = {τ, η}, τ ̸= η

The inequality (37) becomes

(43) h

(
2

2n

)
− 1

2k

∑
ωA∈Ωk

h

(
KωA

2n−k

)
≤

2k −
∑

j∈A mj

2n−1
.

Subcase (a) The vectors τ and η are different in 2 slots ore more. In that case
mj = 0 for all j ∈ A. Thus, we want to show

(44) h

(
1

2n−1

)
− 1

2k

∑
ωA∈Ωk

h

(
KωA

2n−k

)
≤ k

2n−2
.

If PrA(η) ̸= PrA(τ), then KωA
= 1 if ω = τ or ω = η. Thus, one needs to show

(45) h

(
1

2n−1

)
− 1

2k−1
h

(
1

2n−k

)
≤ k

2n−2
.

If one substitutes n by n− 1 and k by k − 1 in (38), one gets

(46) h

(
1

2n−1

)
− 1

2k−1
h

(
1

2n−k

)
≤ k − 1

2n−2
<

k

2n−2
,

hence (45) holds.
If PrA(η) = PrA(τ), then the inequality holds since |PrA(suppf)| = 1.
Subcase (b) The vectors τ and η are different in just 1 slot, say slot j. In that

case one needs to prove

(47) h

(
1

2n−1

)
− 1

2k

∑
ωA∈Ωk

h

(
KωA

2n−k

)
≤ k − 1

2n−2
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if PrA(η) ̸= PrA(τ). Then KωA
= 1 if ω = τ or ω = η leading to

(48) h

(
1

2n−1

)
− 1

2k−1
h

(
1

2n−k

)
≤ k − 1

2n−2
,

which holds by (46).
If PrA(η) = PrA(τ), the inequality holds since |PrA(suppf)| = 1.

Case 3: The support is a subgroup of Ωn and A = [n].

What is meant here is that we identify {0, 1} to Z2, the additive group of equiv-
alence classes modulo 2, and Ωn to the product group Zn

2 . For any fixed j ∈ [n],
denote by δj the Boolean vector in Ωn whose entries are all null, except entry j.
Under the previously described identification, one easily sees that, given a Boolean
function f , the quantities

mj = |suppf ∩ φj(suppf)| j = 1, . . . , n,

can be calculated with the alternative formula

mj = |suppf ∩ (δj + suppf)| j = 1, . . . , n,

where the kind of addition used is addition modulo 2. Finally, recall that the order
of a subgroup of Ωn must be a divisor of 2n, hence it will have the form 2k for some
nonnegative integer k ≤ n. Keeping all the above in mind, we state and prove the
following:

Lemma 1. Let f be a Boolean function, S its support, and ⟨S⟩, the subgroup of
Ωn generated by S. Then, the following inequality holds:

(49)

n∑
j=1

mj ≤ k2k

where 2k = |⟨S⟩|.

Proof. For any fixed j ∈ [n], one has

mj = |suppf ∩ (δj + suppf)| ≤ |⟨S⟩ ∩ (δj + ⟨S⟩)|.
The sets ⟨S⟩ and (δj + ⟨S⟩) are equivalence classes of Ωn modulo ⟨S⟩, and hence
either coincide or are disjoint. The aforementioned classes are disjoint if and only
if δj /∈ ⟨S⟩, in which case mj = 0. Thus, if one denotes by E the subset of [n]
consisting of those numbers j, that satisfy δj ∈ ⟨S⟩, then, one has that

n∑
j=1

mj =
∑
j∈E

mj ≤ |E||⟨S⟩| = |E|2k.

On the otther hand, the set M = {δj : j ∈ E} generates a subgroup of ⟨S⟩ of order
2|E|, hence |E| ≤ k and so, (49) holds. �

Now, observe that if A = [n], the inequality we wish to prove has the form

(50) h

(
K

2n

)
≤

Kn−
∑n

j=1 mj

2n−1
.

and if S =suppf is a subgroup of Ωn of order 2k, then inequality (50) becomes

(51) h

(
1

2n−k

)
≤

2kn−
∑n

j=1 mj

2n−1
.
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We claim that (51) holds. Indeed, by (40) and Lemma 1, one can write

h

(
1

2n−k

)
≤ (n− k)

2n−k−1
=

n2k − k2k

2n−1
≤

2kn−
∑n

j=1 mj

2n−1
.

Remark 1. If f is a Boolean function having support S, A = [n], and ⟨S⟩ ∩
{δ1, . . . , δn} = ∅, then (37) holds.

Indeed, by the proof of Lemma 1, in this case, one has that
∑n

j=1 mj = 0 and
so, what one has to prove is that

h

(
K

2n

)
≤ nK

2n−1
,

a fact that follows if one shows that

F (x) =
nx

2n−1
− h

( x

2n

)
≥ 0 1 ≤ x ≤ 2n.

The above inequality holds, since one checks easily that F ′(x) ≥ 0 if 1 ≤ x < 2n

and

F (1) =
n

2n−1
− h

(
1

2n

)
≥ 0,

by (40).


