445 research outputs found

    Revisiting protein aggregation as pathogenic in sporadic Parkinson and Alzheimer diseases.

    Get PDF
    The gold standard for a definitive diagnosis of Parkinson disease (PD) is the pathologic finding of aggregated α-synuclein into Lewy bodies and for Alzheimer disease (AD) aggregated amyloid into plaques and hyperphosphorylated tau into tangles. Implicit in this clinicopathologic-based nosology is the assumption that pathologic protein aggregation at autopsy reflects pathogenesis at disease onset. While these aggregates may in exceptional cases be on a causal pathway in humans (e.g., aggregated α-synuclein in SNCA gene multiplication or aggregated β-amyloid in APP mutations), their near universality at postmortem in sporadic PD and AD suggests they may alternatively represent common outcomes from upstream mechanisms or compensatory responses to cellular stress in order to delay cell death. These 3 conceptual frameworks of protein aggregation (pathogenic, epiphenomenon, protective) are difficult to resolve because of the inability to probe brain tissue in real time. Whereas animal models, in which neither PD nor AD occur in natural states, consistently support a pathogenic role of protein aggregation, indirect evidence from human studies does not. We hypothesize that (1) current biomarkers of protein aggregates may be relevant to common pathology but not to subgroup pathogenesis and (2) disease-modifying treatments targeting oligomers or fibrils might be futile or deleterious because these proteins are epiphenomena or protective in the human brain under molecular stress. Future precision medicine efforts for molecular targeting of neurodegenerative diseases may require analyses not anchored on current clinicopathologic criteria but instead on biological signals generated from large deeply phenotyped aging populations or from smaller but well-defined genetic-molecular cohorts

    Vascular responses of the extremities to transdermal application of vasoactive agents in Caucasian and African descent individuals

    Get PDF
    This is an accepted manuscript of an article published by Springer in European Journal of Applied Physiology on 04/04/2015, available online: https://doi.org/10.1007/s00421-015-3164-2 The accepted version of the publication may differ from the final published version.© 2015, Springer-Verlag Berlin Heidelberg. Purpose: Individuals of African descent (AFD) are more susceptible to non-freezing cold injury than Caucasians (CAU) which may be due, in part, to differences in the control of skin blood flow. We investigated the skin blood flow responses to transdermal application of vasoactive agents. Methods: Twenty-four young males (12 CAU and 12 AFD) undertook three tests in which iontophoresis was used to apply acetylcholine (ACh 1 w/v %), sodium nitroprusside (SNP 0.01 w/v %) and noradrenaline (NA 0.5 mM) to the skin. The skin sites tested were: volar forearm, non-glabrous finger and toe, and glabrous finger (pad) and toe (pad). Results: In response to SNP on the forearm, AFD had less vasodilatation for a given current application than CAU (P = 0.027–0.004). ACh evoked less vasodilatation in AFD for a given application current in the non-glabrous finger and toe compared with CAU (P = 0.043–0.014) with a lower maximum vasodilatation in the non-glabrous finger (median [interquartile], AFD n = 11, 41[234] %, CAU n = 12, 351[451] %, P = 0.011) and non-glabrous toe (median [interquartile], AFD n = 9, 116[318] %, CAU n = 12, 484[720] %, P = 0.018). ACh and SNP did not elicit vasodilatation in the glabrous skin sites of either group. There were no ethnic differences in response to NA. Conclusion: AFD have an attenuated endothelium-dependent vasodilatation in non-glabrous sites of the fingers and toes compared with CAU. This may contribute to lower skin temperature following cold exposure and the increased risk of cold injuries experienced by AFD.Published versio

    Complex exon-intron marking by histone modifications is not determined solely by nucleosome distribution

    Get PDF
    It has recently been shown that nucleosome distribution, histone modifications and RNA polymerase II (Pol II) occupancy show preferential association with exons (“exon-intron marking”), linking chromatin structure and function to co-transcriptional splicing in a variety of eukaryotes. Previous ChIP-sequencing studies suggested that these marking patterns reflect the nucleosomal landscape. By analyzing ChIP-chip datasets across the human genome in three cell types, we have found that this marking system is far more complex than previously observed. We show here that a range of histone modifications and Pol II are preferentially associated with exons. However, there is noticeable cell-type specificity in the degree of exon marking by histone modifications and, surprisingly, this is also reflected in some histone modifications patterns showing biases towards introns. Exon-intron marking is laid down in the absence of transcription on silent genes, with some marking biases changing or becoming reversed for genes expressed at different levels. Furthermore, the relationship of this marking system with splicing is not simple, with only some histone modifications reflecting exon usage/inclusion, while others mirror patterns of exon exclusion. By examining nucleosomal distributions in all three cell types, we demonstrate that these histone modification patterns cannot solely be accounted for by differences in nucleosome levels between exons and introns. In addition, because of inherent differences between ChIP-chip array and ChIP-sequencing approaches, these platforms report different nucleosome distribution patterns across the human genome. Our findings confound existing views and point to active cellular mechanisms which dynamically regulate histone modification levels and account for exon-intron marking. We believe that these histone modification patterns provide links between chromatin accessibility, Pol II movement and co-transcriptional splicing

    Impact of the "Tobacco control law" on exposure to environmental tobacco smoke in Spain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The initial evaluations of the introduction of legislation that regulates smoking in enclosed public places in European countries, describe an important effect in the control of exposure to environmental tobacco smoke. However, the evidence is still limited. The objective of this study is to estimate the short-term effects of the comprehensive "Tobacco control law" introduced in Spain on January 2006, which includes a total ban of smoking in workplaces and a partial limitation of smoking in bars and restaurants.</p> <p>Methods</p> <p>Cross-sectional, population-based study. The self-reported exposure to environmental tobacco smoke at home, at work, in bars and restaurants of the population aged 18 to 64 years in the Madrid Region during a period prior to the law (October and November 2005; n = 1750) was compared to that of the period immediately after the law came into force (January-July 2006; n = 1252). Adjusted odds ratios (OR) were calculated using logistic regression models.</p> <p>Results</p> <p>Passive exposure to tobacco smoke at home has hardly changed. However, at indoor workplaces there has been a considerable reduction: after the law came into force the OR for daily exposure > 0–3 hours versus non-exposure was 0.11 (95% CI: 0.07 to 0.17) and for more than 3 hours, 0.12 (95% CI: 0.09 to 0.18). For fairly high exposure in bars and restaurants versus non-exposure, the OR in the former was 0.30 (95% CI: 0.20 to 0.44) and in the latter was 0.24 (95% CI: 0.18 to 0.32); for very high exposure versus non-exposure they were 0.16 (95% CI: 0.10 to 0.24) and 0.11 (95% CI: 0.07 to 0.19), respectively. These results were similar for the smoking and non-smoking populations.</p> <p>Conclusion</p> <p>A considerable reduction in exposure to environmental tobacco smoke in the workplace and, to a lesser extent, in bars and restaurants, is related to the implementation of the "Tobacco control law". Although only initial figures, these results already demonstrate the effectiveness of strategies that establish control measures to guarantee smoke-free places.</p

    Podbat: A Novel Genomic Tool Reveals Swr1-Independent H2A.Z Incorporation at Gene Coding Sequences through Epigenetic Meta-Analysis

    Get PDF
    Epigenetic regulation consists of a multitude of different modifications that determine active and inactive states of chromatin. Conditions such as cell differentiation or exposure to environmental stress require concerted changes in gene expression. To interpret epigenomics data, a spectrum of different interconnected datasets is needed, ranging from the genome sequence and positions of histones, together with their modifications and variants, to the transcriptional output of genomic regions. Here we present a tool, Podbat (Positioning database and analysis tool), that incorporates data from various sources and allows detailed dissection of the entire range of chromatin modifications simultaneously. Podbat can be used to analyze, visualize, store and share epigenomics data. Among other functions, Podbat allows data-driven determination of genome regions of differential protein occupancy or RNA expression using Hidden Markov Models. Comparisons between datasets are facilitated to enable the study of the comprehensive chromatin modification system simultaneously, irrespective of data-generating technique. Any organism with a sequenced genome can be accommodated. We exemplify the power of Podbat by reanalyzing all to-date published genome-wide data for the histone variant H2A.Z in fission yeast together with other histone marks and also phenotypic response data from several sources. This meta-analysis led to the unexpected finding of H2A.Z incorporation in the coding regions of genes encoding proteins involved in the regulation of meiosis and genotoxic stress responses. This incorporation was partly independent of the H2A.Z-incorporating remodeller Swr1. We verified an Swr1-independent role for H2A.Z following genotoxic stress in vivo. Podbat is open source software freely downloadable from www.podbat.org, distributed under the GNU LGPL license. User manuals, test data and instructions are available at the website, as well as a repository for third party–developed plug-in modules. Podbat requires Java version 1.6 or higher

    Identifying the science and technology dimensions of emerging public policy issues through horizon scanning

    Get PDF
    Public policy requires public support, which in turn implies a need to enable the public not just to understand policy but also to be engaged in its development. Where complex science and technology issues are involved in policy making, this takes time, so it is important to identify emerging issues of this type and prepare engagement plans. In our horizon scanning exercise, we used a modified Delphi technique [1]. A wide group of people with interests in the science and policy interface (drawn from policy makers, policy adviser, practitioners, the private sector and academics) elicited a long list of emergent policy issues in which science and technology would feature strongly and which would also necessitate public engagement as policies are developed. This was then refined to a short list of top priorities for policy makers. Thirty issues were identified within broad areas of business and technology; energy and environment; government, politics and education; health, healthcare, population and aging; information, communication, infrastructure and transport; and public safety and national security.Public policy requires public support, which in turn implies a need to enable the public not just to understand policy but also to be engaged in its development. Where complex science and technology issues are involved in policy making, this takes time, so it is important to identify emerging issues of this type and prepare engagement plans. In our horizon scanning exercise, we used a modified Delphi technique [1]. A wide group of people with interests in the science and policy interface (drawn from policy makers, policy adviser, practitioners, the private sector and academics) elicited a long list of emergent policy issues in which science and technology would feature strongly and which would also necessitate public engagement as policies are developed. This was then refined to a short list of top priorities for policy makers. Thirty issues were identified within broad areas of business and technology; energy and environment; government, politics and education; health, healthcare, population and aging; information, communication, infrastructure and transport; and public safety and national security

    Surface modification of starch based biomaterials by oxygen plasma or UV-irradiation

    Get PDF
    Radiation is widely used in biomaterials science for surface modification and sterilization. Herein, we describe the use of plasma and UV-irradiation to improve the biocompatibility of different starch-based blends in terms of cell adhesion and proliferation. Physical and chemical changes, introduced by the used methods, were evaluated by complementary techniques for surface analysis such as scanning electron microscopy, atomic force microscopy, contact angle analysis and X-ray photoelectron spectroscopy. The effect of the changed surface properties on the adhesion of osteoblast-like cells was studied by a direct contact assay. Generally, both treatments resulted in higher number of cells adhered to the modified surfaces. The importance of the improved biocompatibility resulting from the irradiation methods is further supported by the knowledge that both UV and plasma treatments can be used as cost-effective methods for sterilization of biomedical materials and devices.I. P. thanks the FCT for providing her a postdoctoral scholarship (SFRH/BPD/8491/2002). This work was partially supported by FCT, through funds from the POCTI and/or FEDER programs, The European Union funded STREP Project HIPPOCRATES (NNM-3-CT-2003-505758) and the European NoE EXPERTISSUES (NMP3-CT-2004-500283)

    Na+ imaging reveals little difference in action potential–evoked Na+ influx between axon and soma

    Get PDF
    Author Posting. © The Authors, 2010. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature Neuroscience 13 (2010): 852-860, doi:10.1038/nn.2574.In cortical pyramidal neurons, the axon initial segment (AIS) plays a pivotal role in synaptic integration. It has been asserted that this property reflects a high density of Na+ channels in AIS. However, we here report that AP–associated Na+ flux, as measured by high–speed fluorescence Na+ imaging, is about 3 times larger in the rat AIS than in the soma. Spike evoked Na+ flux in the AIS and the first node of Ranvier is about the same, and in the basal dendrites it is about 8 times lower. At near threshold voltages persistent Na+ conductance is almost entirely axonal. Finally, we report that on a time scale of seconds, passive diffusion and not pumping is responsible for maintaining transmembrane Na+ gradients in thin axons during high frequency AP firing. In computer simulations, these data were consistent with the known features of AP generation in these neurons.Supported by US– Israel BSF Grant (2003082), Grass Faculty Grant from the MBL, NIH Grant (NS16295), Multiple Sclerosis Society Grant (PP1367), and a fellowship from the Gruss Lipper Foundation
    corecore