576 research outputs found

    Self-Stabilizing Token Distribution with Constant-Space for Trees

    Get PDF
    Self-stabilizing and silent distributed algorithms for token distribution in rooted tree networks are given. Initially, each process of a graph holds at most l tokens. Our goal is to distribute the tokens in the whole network so that every process holds exactly k tokens. In the initial configuration, the total number of tokens in the network may not be equal to nk where n is the number of processes in the network. The root process is given the ability to create a new token or remove a token from the network. We aim to minimize the convergence time, the number of token moves, and the space complexity. A self-stabilizing token distribution algorithm that converges within O(n l) asynchronous rounds and needs Theta(nh epsilon) redundant (or unnecessary) token moves is given, where epsilon = min(k,l-k) and h is the height of the tree network. Two novel ideas to reduce the number of redundant token moves are presented. One reduces the number of redundant token moves to O(nh) without any additional costs while the other reduces the number of redundant token moves to O(n), but increases the convergence time to O(nh l). All algorithms given have constant memory at each process and each link register

    Maximum Matching for Anonymous Trees with Constant Space per Process

    Get PDF
    We give a silent self-stabilizing protocol for computing a maximum matching in an anonymous network with a tree topology. The round complexity of our protocol is O(diam), where diam is the diameter of the network, and the step complexity is O(n*diam), where n is the number of processes in the network. The working space complexity is O(1) per process, although the output necessarily takes O(log(delta)) space per process, where delta is the degree of that process. To implement parent pointers in constant space, regardless of degree, we use the cyclic Abelian group Z_7

    High Energy Ferrite Magnets

    Full text link

    Laser Machining by short and ultrashort pulses, state of the art and new opportunities in the age of the photons

    Get PDF
    An overview is given of the applications of short and ultrashort lasers in material processing. Shorter pulses reduce heat-affected damage of the material and opens new ways for nanometer accuracy. Even forty years after the development of the laser there is a lot of effort in developing new and better performing lasers. The driving force is higher accuracy at reasonable cost, which is realised by compact systems delivering short laser pulses of high beam quality. Another trend is the shift towards shorter wavelengths, which are better absorbed by the material and which allows smaller feature sizes to be produced. Examples of new products, which became possible by this technique, are given. The trends in miniaturization as predicted by Moore and Taniguchi are expected to continue over the next decade too thanks to short and ultrashort laser machining techniques. After the age of steam and the age of electricity we have entered the age of photons now

    Loosely-Stabilizing Leader Election with Polylogarithmic Convergence Time

    Get PDF
    A loosely-stabilizing leader election protocol with polylogarithmic convergence time in the population protocol model is presented in this paper. In the population protocol model, which is a common abstract model of mobile sensor networks, it is known to be impossible to design a self-stabilizing leader election protocol. Thus, in our prior work, we introduced the concept of loose-stabilization, which is weaker than self-stabilization but has similar advantage as self-stabilization in practice. Following this work, several loosely-stabilizing leader election protocols are presented. The loosely-stabilizing leader election guarantees that, starting from an arbitrary configuration, the system reaches a safe configuration with a single leader within a relatively short time, and keeps the unique leader for an sufficiently long time thereafter. The convergence times of all the existing loosely-stabilizing protocols, i.e., the expected time to reach a safe configuration, are polynomial in n where n is the number of nodes (while the holding times to keep the unique leader are exponential in n). In this paper, a loosely-stabilizing protocol with polylogarithmic convergence time is presented. Its holding time is not exponential, but arbitrarily large polynomial in n

    Measurement of a small atmospheric ΜΌ/Μe\nu_\mu/\nu_e ratio

    Full text link
    From an exposure of 25.5~kiloton-years of the Super-Kamiokande detector, 900 muon-like and 983 electron-like single-ring atmospheric neutrino interactions were detected with momentum pe>100p_e > 100 MeV/cc, pΌ>200p_\mu > 200 MeV/cc, and with visible energy less than 1.33 GeV. Using a detailed Monte Carlo simulation, the ratio (Ό/e)DATA/(Ό/e)MC(\mu/e)_{DATA}/(\mu/e)_{MC} was measured to be 0.61±0.03(stat.)±0.05(sys.)0.61 \pm 0.03(stat.) \pm 0.05(sys.), consistent with previous results from the Kamiokande, IMB and Soudan-2 experiments, and smaller than expected from theoretical models of atmospheric neutrino production.Comment: 14 pages with 5 figure

    OspA heterogeneity of Borrelia valaisiana confirmed by phenotypic and genotypic analyses

    Get PDF
    BACKGROUND: Although European Borrelia burgdorferi sensu lato isolates have been divided into five genospecies, specific tools for the serotype characterization of only three genospecies are available. Monoclonals antibodies (mAbs) H3TS, D6 and I17.3 identify B. burgdorferi sensu stricto (ss.), B. garinii and B. afzelii respectively, but no mAbs are available to identify B. valaisiana. In the same way, specific primers exist to amplify the OspA gene of B. burgdorferi ss., B. garinii and B. afzelii. The aim of the study was to develop species-specific mAb and PCR primers for the phenotypic and genetic identification of B. valaisiana. RESULTS: This study describes a mAb that targets OspA of B. valaisiana and primers targeting the OspA gene of this species. As the monoclonal antibody A116k did not react with strains NE231, M7, M53 and Frank and no amplification was observed with strains NE231, M7 and M53, the existence of two subgroups among European B. valaisiana species was confirmed. CONCLUSIONS: The association of both monoclonal antibody A116k and primers Bval 1F and Bval 1R allows to specific identification of the B. valaisiana isolates belonging to subgroup 1
    • 

    corecore