
Computer Science Faculty Publications Computer Science

12-17-2018

Self-Stabilizing Token Distribution with Constant-Space for Trees Self-Stabilizing Token Distribution with Constant-Space for Trees

Yuichi Sudo
Osaka University, y-sudou@ist.osaka-u.ac.jp

Ajoy K. Datta
University of Nevada, Las Vegas, ajoy.datta@unlv.edu

Lawrence L. Larmore
University of Nevada, Las Vegas, lawrence.larmore@unlv.edu

Toshimitsu Masuzawa
Osaka University, masuzawa@ist.osaka-u.ac.jp

Follow this and additional works at: https://digitalscholarship.unlv.edu/compsci_fac_articles

 Part of the Computer Sciences Commons

Repository Citation Repository Citation
Sudo, Y., Datta, A. K., Larmore, L. L., Masuzawa, T. (2018). Self-Stabilizing Token Distribution with
Constant-Space for Trees. 22nd International Conference on Principles of Distributed Systems (OPODIS
2018) 1-16. Hong Kong, China: Schloss Dagstuhl – Leibniz Center for Informatics.
http://dx.doi.org/10.4230/LIPIcs.OPODIS.2018.31

This Conference Proceeding is protected by copyright and/or related rights. It has been brought to you by Digital
Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Conference Proceeding in
any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you
need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative
Commons license in the record and/or on the work itself.

This Conference Proceeding has been accepted for inclusion in Computer Science Faculty Publications by an
authorized administrator of Digital Scholarship@UNLV. For more information, please contact
digitalscholarship@unlv.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Nevada, Las Vegas Repository

https://core.ac.uk/display/225355924?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/compsci_fac_articles
https://digitalscholarship.unlv.edu/compsci
https://digitalscholarship.unlv.edu/compsci_fac_articles?utm_source=digitalscholarship.unlv.edu%2Fcompsci_fac_articles%2F152&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalscholarship.unlv.edu%2Fcompsci_fac_articles%2F152&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.4230/LIPIcs.OPODIS.2018.31
mailto:digitalscholarship@unlv.edu

Self-Stabilizing Token Distribution with
Constant-Space for Trees
Yuichi Sudo
Graduate School of Information Science and Technology, Osaka University, Japan
y-sudou@ist.osaka-u.ac.jp

Ajoy K. Datta
Department of Computer Science, University of Nevada, Las Vegas, USA
ajoy.datta@unlv.edu

Lawrence L. Larmore
Department of Computer Science, University of Nevada, Las Vegas, USA
lawrence.larmore@unlv.edu

Toshimitsu Masuzawa
Graduate School of Information Science and Technology, Osaka University, Japan
masuzawa@ist.osaka-u.ac.jp

Abstract
Self-stabilizing and silent distributed algorithms for token distribution in rooted tree networks
are given. Initially, each process of a graph holds at most ` tokens. Our goal is to distribute
the tokens in the whole network so that every process holds exactly k tokens. In the initial
configuration, the total number of tokens in the network may not be equal to nk where n is the
number of processes in the network. The root process is given the ability to create a new token or
remove a token from the network. We aim to minimize the convergence time, the number of token
moves, and the space complexity. A self-stabilizing token distribution algorithm that converges
within O(n`) asynchronous rounds and needs Θ(nhε) redundant (or unnecessary) token moves is
given, where ε = min(k, `− k) and h is the height of the tree network. Two novel ideas to reduce
the number of redundant token moves are presented. One reduces the number of redundant token
moves to O(nh) without any additional costs while the other reduces the number of redundant
token moves to O(n), but increases the convergence time to O(nh`). All algorithms given have
constant memory at each process and each link register.

2012 ACM Subject Classification Theory of computation → Self-organization

Keywords and phrases token distribution, self-stabilization, constant-space algorithm

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2018.31

Related Version The brief announcement version of this paper is published in [16].

Acknowledgements This work was supported by JSPS KAKENHI Grant Numbers 17K19977
and 18K18000, and Japan Science and Technology Agency(JST) SICORP.

1 Introduction

The token distribution problem was originally defined by Peleg and Upfal in their seminal
paper [15]. Consider a network of n processes and n tokens. Initially, the tokens are arbitrarily
distributed among processes but with up to a maximum of ` tokens in any process. The
problem is to distribute the tokens among the processes such that every process ends up
with exactly one token. The above problem was redefined in another paper by the same

© Yuichi Sudo, Ajoy K.Datta, Lawrence L. Larmore, and Toshimitsu Masuzawa;
licensed under Creative Commons License CC-BY

22nd International Conference on Principles of Distributed Systems (OPODIS 2018).
Editors: Jiannong Cao, Faith Ellen, Luis Rodrigues, and Bernardo Ferreira; Article No. 31; pp. 31:1–31:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:y-sudou@ist.osaka-u.ac.jp
mailto:ajoy.datta@unlv.edu
mailto:lawrence.larmore@unlv.edu
mailto:masuzawa@ist.osaka-u.ac.jp
https://doi.org/10.4230/LIPIcs.OPODIS.2018.31
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

31:2 Self-Stabilizing Token Distribution with Constant-Space for Trees

authors [14] by considering m tokens instead of n tokens. The goal in this case is to reach a
configuration at which there are either bm/nc or dm/ne tokens at each process. The token
distribution problem is a form of the load balancing problem in distributed systems. A token
can be considered to represent a unit of task (or load) of a process. The solution to the token
distribution problem provides a solution of the load balancing problem, where the goal is to
maintain the loads of process as evenly as possible.

The fault-tolerant (self-stabilizing) version of the problem of load balancing in distributed
systems was first considered by Arora and Gouda [1]. A self-stabilizing algorithm has two
properties, convergence and stability. The convergence property states that regardless of
the initial number of tokens in the processes, when the faults cease to occur, that is, the
environment no longer changes the load, the execution will reach in finite steps a state where
the loads of processes are balanced. The stability property avoids the possibility of any
execution shifting any unit of load between any two processes forever.

In [1] and many other papers on token distribution papers, a special property (referred
to as constraint in [1]) is maintained. This property specifies that during any execution
of the load balancing or token distribution algorithm, no new tokens are produced and no
tokens are consumed by any process. However, that constraint cannot be maintained in our
work due to the nature of the problem. The token distribution problem solved in this paper
requires storing a fixed number (k) of tokens at each process. As we deal with self-stabilizing
systems, the network (tree in this paper) can start in an arbitrary configuration where the
total number of tokens in the network may not be exactly equal to nk. Instead, each process
holds an arbitrary number, from zero to `, of tokens in an initial configuration. Thus, our
algorithm must make an exception to the constraint above. We assume that only the root
process can push/pull tokens to/from the external store as needed.

We present three silent and self-stabilizing token distribution algorithms for rooted tree
networks in this paper. The performances of the algorithms are summarized in Table 1.
First, we present a self-stabilizing token distribution algorithm Base. This algorithm has
the optimal convergence time, O(n`) (asynchronous) rounds. (As we will see in Section 3,
any self-stabilizing token distribution algorithm requires convergence time of Ω(n`) rounds.)
However, Base may have a large number of redundant token moves; Θ(nhε) redundant
(or unnecessary) token moves occur in the worst case where ε = min(k, ` − k), where h is
the height of the tree network. Next, we combine the algorithm Base with a synchronizer
or with PIF waves to reduce redundant token moves, which results in SyncTokenDist or
PIFTokenDist, respectively. Algorithm SyncTokenDist reduces the number of redundant
token moves to O(nh) without additional costs, while PIFTokenDist drastically reduces
the number of redundant token moves to the asymptotically optimal value, i.e., O(n), at
the expense of increasing convergence time from O(n`) to O(nh`) rounds. The work space
space, i.e., the amount of memory needed to store information except for tokens, of all our
algorithms are constant both per process and per link register.

1.1 Related Work
The token distribution problem is introduced by Peleg and Upfal in [15]. Another solution
to the same problem is given by the same authors in [14]. In these papers, the problem is
defined for general bounded degree graphs. Herley [8] gives another scheme to solve the
problem and claims that his solution is more efficient if the time for the local computation
steps is not ignored. Another version of the problem, called near-perfect token distribution
problem is introduced in [2]. In this problem, at the termination of the algorithm, no more
than O(1) tokens can be present at any process. There is a variation of the near-perfect

Y. Sudo, A. K.Datta, L. L. Larmore, and T. Masuzawa 31:3

Table 1 Token distribution algorithms for rooted trees. (ε = min(k, `− k)).

Conv. Time #Red. Token Moves Work Space (Process,Link)
Base O(n`) rounds Θ(nhε) (0, O(1))

SyncTokenDist O(n`) rounds O(nh) (O(1), O(1))
PIFTokenDist O(nh`) rounds O(n) (O(1), O(1))
LowerBounds Ω(n`) rounds Ω(n) -

token distribution problem, where the maximum difference of tokens between any pair of
processes at the termination of the algorithm is non-constant. That is, the difference depends
on some network parameter. Algorithms in [7, 10, 11] are in this category. Algorithms for
general networks are given in [7], for complete binary trees in [10], and for meshes and torus
networks in [11].

The token distribution problem for tree networks is stated, without any solution, by Peleg
in [13]. In this paper, we solve the problem given in that paper. Another version of the token
distribution problem on trees is stated in [12], where the total number of tokens, denoted by
T , and the number of processes of the tree are computed by the algorithm. The tokens are
then distributed perfectly among the processes in O(Td) time, where d is the diameter of the
tree. Although the asynchronous message passing model was used in their work, they used
stronger communication primitives than the typical send/receive primitives. The solution in
[9] is for tree networks, where processes use the knowledge of n. The dimension-exchange
model used in [9] is also different from models used by the other algorithms discussed above.

The token distribution problem is a version of the load balancing problem. Arora and
Gouda [1] give self-stabilizing load balancing algorithms for ring and tree networks. Starting
from an arbitrary initial assignment of load (or tasks), their algorithms are guaranteed to
converge to a state where the loads of any pair of processes differ by at most 1.

2 Preliminaries

2.1 Model of Computation

We consider a tree network T = (V,E) where V is the set of n processes and E is the set
of n− 1 links. Let vroot be the root process of T , and let p(v) be the parent of any process
v 6= vroot. Let N(v) be the neighbors of a process v. Let C(v) be the set of children of v,
i.e., all neighbors of v except its parent. Let Tv be sub-tree of T consisting of v and its
descendants. Let nv = |Tv|. The height hv of a process v is the length of the longest path
through T between v and a leaf of Tv. Let h = hvroot .

Each link {u, v} ∈ E has two link registers (or just registers) ru,v and rv,u. We call ru,v
an output register of u and an input register of v. A process can read its input and its output
registers. but can write only to its output registers. Thus, neighboring processes u and v
can communicate with each other through ru,v and rv,u.

A process v holds at most ` tokens, each of which is a bit sequence of length b. These
tokens are stored in a dedicated memory space of the process, called the internal token store,
written v.tokenStore, We use a link register to send and receive a token between processes.
Each register ru,v contains at most one token in a dedicated variable ru,v.token. The root
process vroot can also access the external token store, which contains infinitely many tokens.
As we will see later, vroot can reduce the total number of tokens in the tree, i.e., the tokens
in the internal token stores and the links, by pushing a token into the external store, and
can increase it by pulling a token from the external store.

OPODIS 2018

31:4 Self-Stabilizing Token Distribution with Constant-Space for Trees

We use the composite atomicity model with link registers. An algorithm A is specified
by a set of local variables in processes, a set of shared variables in link registers, and actions
that specify how a process v updates its local variables and shared variables in its output
registers at each step, but not the local variables of its neighbors. When a process v executes
the procedure, according to the values of its local variables, shared variables in ru,v and
rv,u for all u ∈ N(v), the number of tokens in its token store (i.e., |v.tokenStore|), and two
given parameters ` and k, process v updates its local variables and shared variables of rv,u,
and executes Push and Pull arbitrarily many times. If a process v executes v.Push(x), it
append a token with bit sequence x into its token store; when it executes v.Pull(), it extracts
and removes an arbitrary token from its token store. A process v can detect whether its
local token store is empty (i.e., |v.tokenStore| = 0), and whether its local token store is full
(i.e., |v.tokenStore| = `). A process v is not allowed to invoke Pull when its token store is
empty, nor to invoke Push when its token store is full. The root process vroot can push a
token into or pull a token out of the external store by executing exPush(x) and exPull(),
respectively. Typically, it can move a token from its local token store to the external store
by exPush(Pull()) and can move a token in the reverse direction by Push(exPull()). There
is one restriction, however, each of exPush() and exPull() can be executed at most once per
step.1 We say a process is enabled if execution of the procedure would change the value of
at least one variable; otherwise, the process is disabled.

The values of all variables in a process define the state of the process; similarly, the
values of the variables, including token, in a link register define the state of that register. A
global state or configuration of T is specified by the the states of all processes, the states
of all link registers, and the contents of the token stores of all processes. Let γ and γ′ be
two configurations of an algorithm A on T . We say that γ 7→ γ′ is a step of A if there is a
non-empty set S ⊆ V of enabled processes such that γ changes to γ′ when all the processes in
S simultaneously execute the procedure of A. A process in S is said to be selected at the step
γ 7→ γ′. We define an execution of A to be a maximal sequence γ0, γ1, . . . of configurations
such that each γi 7→ γi+1 is a step of A. For any local variable var1 and any shared variable
var2, we denote local variable var1 of a process v by v.var1, and shared variable var2 of
register ru,v by ru,v.var2. Furthermore, for any configuration γ, we denote the values of
v.var1 and ru,v.var2 in configuration γ by γ(v).var1 and γ(ru,v).var2, respectively.

We assume that a scheduler (or daemon) selects a set of processes that execute at each
step of an execution. The execution ends when there are no enabled processes. In this paper,
we assume the distributed unfair daemon, which selects an arbitrary nonempty subset of
enabled processes at each step; it is unfair because it is not required to select a specific
enabled process v unless v is the only enabled process.

2.2 Problem Specification
We now formally specify the problem. Given positive integers k ≤ `, our goal is to reach a
configuration where every process holds exactly k tokens starting from any configuration
where the number of tokens at each process is arbitrary in the range 0, 1, . . . , `.

First, we give the definition of legality of an algorithm. Intuitively, we want to guarantee
that no tokens in the network disappear from the network unless vroot pushes them into the
external store, and that no new token appears in the network until vroot pulls a token from

1 This is a natural restriction since we have the rule that a process can send at most one token to a given
neighbor in a step, as we shall see later. Simply think of the external store as located in a fictitious
neighboring process.

Y. Sudo, A. K.Datta, L. L. Larmore, and T. Masuzawa 31:5

the external store. The nature of a token is defined by the application; we can assume it is a
bit string. To transfer a token x from process u to v, process u writes x to ru,v.token. But v
cannot delete x from ru,v.token since ru,v is an input register of v. Instead, we assume that
every algorithm A specifies a predicate PA which indicates whether or not A recognizes that
a token exists in a link register ru,v according to the states of ru,v and rv,u. Let RA be the
set of all the states of a register in algorithm A. Given PA : RA × RA → {false, true}, we
consider that a token represented by the bit sequence x exists in register ru,v if and only if
ru,v.token = x and PA(a, b) = true where a and b are the states of ru,v and rv,u, respectively.
Then, the multiset of tokens in the network with a configuration γ is uniquely determined
and we denote this multiset by mγ,PA . (i.e., A bit sequence x appears nx times in multiset
mγ,PA if and only if exactly nx tokens with contents x exists in the network.) We say that a
step γ 7→ γ′ is legal with PA if the following three conditions hold: (i) process vroot does not
invoke both the two commands exPush(x) and exPull() in step γ 7→ γ′, (ii) if vroot pulls a
token x from (resp. pushes a token x to) the external store in step γ 7→ γ′, the number of
tokens with contents x increases (resp. decreases) by one and the numbers of other tokens
are unchanged from mγ,PA to mγ′,PA , and (iii) if vroot does not execute either exPush(x)
nor exPull() during step γ 7→ γ′, then mγ,PA = mγ′,PA . We say that an algorithm A is
legal with PA if every step of algorithm A is legal with PA.

We say that A is a self-stabilizing [6] token distribution algorithm if A is legal with some
predicate PA and there is a set LA of legitimate configurations, such that the following
three conditions are satisfied: (i) Closure: If γ ∈ LA holds, and γ 7→ γ′ is a step of A,
then γ′ ∈ LA. (ii) Convergence: Every execution of A, which starts from an arbitrary
configuration, contains a configuration in LA. (iii) Correctness: At any γ ∈ LA, every
process holds exactly k tokens in its token store and no registers hold tokens in γ in the sense
of predicate PA. We also say that a self-stabilizing token distribution algorithm A is silent if
every execution of A is finite, that is, reaches a configuration where no process is enabled.

2.3 Complexities
We evaluate token distribution algorithms with three metrics – time complexity, space
complexity, and the number of token moves.

We measure the time complexity in terms of (asynchronous) rounds. Let Γ = γ0, γ1, . . .

be an execution of A, and let E be the set of processes which are enabled at γ0. We define
the first round of execution Γ to be the smallest prefix, say γ0, . . . , γt, of Γ such that every
member of E either executes or becomes disabled during the first t steps. We define γ0, . . . γt
to be the range of the first round of Γ. Let Γ′ be the suffix of Γ starting from γt. The second
round of Γ is defined to be the first round of Γ′, and so forth.

It requires lb bits (resp. b bits) of space to manage a token store in each process (resp. vari-
able token in each register). In this paper, we focus on work space complexity in each process
and in each register of an algorithm. The work space complexity in each process (resp. in
each register) is the bit length to represent all variables on the process (resp. in the register)
except for tokenStore (resp. token).

Generally, a token is transferred from a process u to a process v in the following two
steps: (i) u moves the token from u.tokenStore to ru,v.token; (ii) v moves the token from
ru,v.token to v.tokenStore. In this paper, we regard the above two steps together as one
token move and consider the number of token moves as the number of the occurrences of
the former steps. Specifically, we say that a token moves from u to v in step γ 7→ γ′ of
algorithm A when predicate ¬PA(γ(ru,v), γ(rv,u))∧PA(γ′(ru,v), γ′(rv,u)) holds. Furthermore,
introducing a virtual process p(vroot) /∈ V , we also say that a token moves from vroot to

OPODIS 2018

31:6 Self-Stabilizing Token Distribution with Constant-Space for Trees

!"##$

⁄& 2 processes
with ⁄&(2 tokens

⁄& 2-1 processes
with no tokens

))′

Figure 1 A tree to prove Theorem 1.

…

…

!"##$

%&

'&

%(

'(

%)

')

%*+

'*+

Figure 2 A tree to prove Theorem 2.

p(vroot) (resp. from p(vroot) to vroot) in a step when vroot invokes exPush() (resp. exPull())
in that step. We are interested in the number of redundant token moves. Given v ∈ V and
configuration γ, let τ(γ, v) be the number of tokens in input registers of v in configuration γ.
Then, we define ∆(γ, v) =

∑
u∈Tv

d(γ, u) where d(γ, u) = |γ(u).tokenStore|+ τ(γ, u) − k.
Intuitively, ∆(γ, v) is the number of tokens that v must send to p(v) to achieve the token
distribution in an execution starting from configuration γ if ∆(γ, v) ≥ 0; Otherwise, p(v)
must send −∆(γ, v) tokens to v in the execution. Therefore, in an execution Γ = γ0, γ1, . . . ,
we need at least

∑
v∈V |∆(γ0, v)| token moves to achieve token distribution. We define the

number of redundant token moves in Γ = γ0, γ1, . . . as the total number of token moves in
the execution minus

∑
v∈V |∆(γ0, v)|.

3 Lower Bounds

I Theorem 1. For any self-stabilizing token distribution algorithm A, there exists an
execution of A that takes Ω(nl) rounds to reach a configuration where all processes hold
exactly k tokens.

Proof. Consider a tree network of an even number of processes where vroot has two children
u and u′ where nu = n/2 and nu′ = n/2 − 1, and consider a configuration of A on the
graph where Tu holds nu · l tokens in total and Tu′ holds zero tokens (Figure 1). Obviously,
process u must be selected by the scheduler Ω(n(l − k)) times to send nu(l − k) tokens to
vroot and process u′ must be selected by the scheduler Ω(nk) times to receive nv · k tokens
from vroot. Thus, there exists an execution of A starting from this configuration which takes
max(Ω(n(l − k)),Ω(nk)) = Ω(nl) rounds to achieve the token distribution. J

I Theorem 2. For any self-stabilizing token distribution algorithm A, there exists an
execution of A such that the number of redundant token moves in the execution is Ω(n).

Proof. Consider the tree network where vroot has n′ children u1, u2, . . . , un′ , each ui has
exactly one child wi, and no other processes exist (See Figure 2). Consider an execution
of A, on this graph, that starts from a configuration where, for all i = 1, 2, . . . , n′, process
ui holds k + 1 tokens, wi holds no token, and ui, rui,vroot , rvroot,ui

, rui,wi
, and rwi,ui

are in
states such that ui sends a token to vroot when ui is selected by the scheduler. (Such states
must exist for any self-stabilizing token distribution algorithm.) If every ui is selected by the
scheduler in the first step of this execution, then n′ = bn/2c redundant token moves must
happen in the first step. J

Y. Sudo, A. K.Datta, L. L. Larmore, and T. Masuzawa 31:7

4 Constant-Space Algorithms for Self-stabilizing Token Distribution

Before presenting the three algorithms – Base, SyncTokenDist, and PIFTokenDist – we
describe the token-passing mechanism (or handshake mechanism) that all these algorithms
use to send and receive a token between two processes. Each register ru,v has two shared
boolean variables ru,v.exist and ru,v.ready in addition to ru,v.token. We use predicate
PBase(a, b) ≡ a.exist ∧ b.ready (where a and b are states of ru,v and rv,u, respectively) for
all the three algorithms to represent the existence of a token in link register: register ru,v
holds a token when ru,v.exist∧ rv,u.ready holds. Let u and v be neighboring processes. We
define four predicates used in the pseudocodes as follows:

IsReady(u, v) ≡ (¬ru,v.exist ∧ rv,u.ready),
JustSent(u, v) ≡ (ru,v.exist ∧ rv,u.ready),

JustReceived(u, v) ≡ (ru,v.exist ∧ ¬rv,u.ready),
NotReady(u, v) ≡ (¬ru,v.exist ∧ ¬rv,u.ready).

All the three algorithms adopt the token passing mechanism consisting of the following rules
to send a token from a process u to a process v:
Rule 1 When IsReady(u, v) and |u.tokenStore| > 0, process u may perform “ru,v.token←

Pull()” and “ru,v.exist← true”. After that, JustSent(u, v) becomes true.
Rule 2 When JustSent(u, v) and |v.tokenStore| < l, process v may perform

“Push(ru,v.token)” and “rv,u.ready ← false”. After that, JustReceived(u, v) becomes
true.

Rule 3 When JustReceived(u, v), process u may perform “ru,v.exist← false”. After that,
NotReady(u, v) becomes true.

Rule 4 When NotReady(u, v), process v may perform “rv,u.ready ← true”. After that,
IsReady(u, v) becomes true.

By definition of PBase, a token exists in ru,v if and only if JustSent(u, v) is true. In any step
γ 7→ γ′, none of the above rule changes mγ,PBase , i.e., a multiset of tokens in the network. In
addition to the above rules, there is another mechanism to update a local token store. The
root process vroot pushes a token to and pulls a token from the external store. Specifically,
vroot pulls a token from the external store by Push(exPull()), and vroot pushes a token to
the external store by “exPush(Pull())”. The former (resp. latter) operation is performed
only when |vroot.tokenStore| < l (resp. |vroot.tokenStore| > 0). Shared variables token,
exist, and ready are never updated in any way other than Rules 1-4.

An arbitrary step γ 7→ γ′ of an algorithm which adopts the above token mechanism is
legal because Rules 1-4 do not affect the multiset mγ′,PBase . Thus the following lemma holds.

I Lemma 3. Algorithms Base, SyncTokenDist, and PIFTokenDist are all legal with PBase.

4.1 Algorithm Base
In this section, we define our self-stabilizing token distribution algorithm, which we call

Base. The work space complexity of Base in process (resp. on register) is zero (resp. constant).
Its convergence time is O(n`) rounds and it makes Θ(nhε) redundant token moves.

Some functions take a configuration (e.g., γ) as one of their arguments, such as ∆(γ, v),
defined in Section 2.2. In what follows, we omit the configuration when it is clear from the
context. For example, we write ∆(v) instead of ∆(γ, v). We use the standard notation sgn(x),
that is, sgn(x) = 1, sgn(x) = 0, and sgn(x) = −1 if x > 0, x = 0, and x < 0, respectively.

OPODIS 2018

31:8 Self-Stabilizing Token Distribution with Constant-Space for Trees

Algorithm 1 Base
[Variables of process v and register rv,u]
v.tokenStore {an array containing at most l tokens}
rv,u.exist, rv,u.ready
rv,u.est ∈ {1, 0+, 0, 0−,−1,⊥} {rv,u.est ∈ {1, 0,−1} if v is a leaf.}
rv,u.token ∈ 2b

[Actions of process v]
1: rv,u.exist← false for all u ∈ N(v) such that JustReceived(v, u)
2: rv,u.ready← true for all u ∈ N(v) such that NotReady(u, v)
3: ReceiveToken(u) for all u ∈ N(v) such that JustSent(u, v)
4: SendToken(u) for all u ∈ C(v) such that ru,v.est = −1 ∧ IsReady(v, u)
5: if v = vroot then
6: AdjustTokens()
7: else
8: SendToken(p(v)) if Est(v) = 1 ∧ IsReady(v, p(v))
9: rv,p(v).est← Est(v)

10: end if

[SendToken(u)]:
11: if |v.tokenStore| > 0 then
12: rv,u.token← Pull()
13: rv,u.exist← true
14: ReceiveToken(w) if ∃w ∈ N(v) : JustSent(w, v)
15: end if

[ReceiveToken(u)]:
16: if |v.tokenStore| < l then
17: Push(ru,v.token)
18: rv,u.ready← false
19: end if

[AdjustTokens()]:
20: if Est(v) = −1 then
21: Push(exPull())
22: else if Est(v) = 1 then
23: exPush(Pull())
24: ReceiveToken(u) if ∃u ∈ N(v) : JustSent(u, v)
25: end if

During an execution of Base, each process v tries to estimate sgn(∆(v)), that is, tries
to find whether ∆(v) is positive, negative, or just zero. Each process v 6= vroot reports that
estimate to its parent p(v) using a shared variable rv,p(v).est. When its estimate is negative,
p(v) sends a token to v if p(v) holds a token and IsReady(p(v), v). When the estimate is
positive, v sends a token to its parent p(v) if v holds a token and IsReady(v, p(v)). The root
vroot always pulls a new token from the external store to increase ∆(vroot) when its estimate
is negative, and pushes a token to the external store to decrease ∆(vroot) when the estimate
is positive. If all processes v correctly estimate sgn(∆(v)), each of them eventually holds k
tokens. After that, no process sends a token.

Y. Sudo, A. K.Datta, L. L. Larmore, and T. Masuzawa 31:9

Thus, estimating sgn(∆(v)) is the key of algorithm Base. Each process v computes Est(v),
its estimate of sgn(∆(v)) as follows.

Est(v) =

1 (Diff (v) > 0 ∧ ∀u ∈ C(v) : ru,v.est ∈ {1, 0+, 0})

0+ (Diff (v) = 0 ∧ ∀u ∈ C(v) : ru,v.est ∈ {1, 0+, 0}
∧∃w ∈ C(v) : ru,v.est ∈ {0+, 1})

0 (Diff (v) = 0 ∧ ∀u ∈ C(v) : ru,v.est = 0)

0− (Diff (v) = 0 ∧ ∀u ∈ C(v) : ru,v.est ∈ {−1, 0−, 0}
∧∃w ∈ C(v) : ru,v.est ∈ {0−,−1})

−1 (Diff (v) < 0 ∧ ∀u ∈ C(v) : ru,v.est ∈ {−1, 0−, 0})
⊥ (otherwise),

Diff (v) = |v.tokenStore|+ |{u ∈ N(v) | JustSent(u, v)}| − k

where the candidate values 1, 0+, 0, 0−, −1, and ⊥ of Est(v) represent that the estimate is
positive, “never negative”, zero, “never positive”, negative, and “unsure”, respectively. A
process sends a token to its parent only when its estimate is 1, and it sends a token to its
child only when the child’s estimate is −1. Note that ∆(v) =

∑
u∈Tv

Diff (u). For process
v ∈ V \ {vroot}, the domain of variable rv,p(v).est is {1, 0+, 0, 0−,−1} if v is not a leaf, and
is {1, 0,−1} if v is a leaf.

Algorithm 1 gives the pseudocode of Base. When v executes, it first updates rv,u.exist
and rv,u.ready for all u ∈ N(v) such that JustReceived(v, u) or NotReady(u, v), according
to the token-passing mechanism (Lines 1-2). Then, v checks whether each input register
ru,v holds a token, and receives that token by invoking ReceiveToken(u) if its token store
is not full, using the token-passing mechanism (Lines 3, 16-19). Then, v sends a token to
each u ∈ C(v) such that IsReady(v, u) and ru,v.est = −1 (i.e., ∆(u) is estimated to be
negative) by invoking SendToken(u) if v’s token store is not empty (Lines 4, 11-15). Next,
v ∈ V \{vroot} and vroot perform different action. If v 6= vroot, it sends a token to its parent if
IsReady(v, p(v)) and Est(v) = 1, i.e., ∆(v) is estimated to be positive, and reports the latest
estimate of sgn(∆(v)) to its parent, and stores Est(v) into rv,p(v).est (Lines 7-10). Note
that Diff (v) decreases when v sends a token to its parent, hence the value of Est(v) may
differ in Lines 8 and 9. Process vroot invokes AdjustTokens() by which vroot may increase or
decrease the number of tokens in the tree by pulling a token from or pushing a token to the
external store (Lines 6, 20-25).

In the algorithm description, we have used several functions which take a process as an
argument, like Est(v) and Diff (v). The values of such functions depend on the states of the
process and its registers, i.e., they depend on the current configuration. In what follows, we
sometimes denote such functions with an explicitly specified configuration. For example, we
sometimes denote Est(v) in configuration γ by Est(γ, v) and denote Diff (v) in configuration
γ by Diff (γ, v).

In what follows, we show the correctness, the number of redundant token moves, and the
convergence time of algorithm Base. First, we show that every execution of Base is finite
(Lemma 4). The correctness of Base immediately follows. (Theorem 5).

I Lemma 4. Every execution of Base is finite.

Proof. Fix an execution Γ = γ0, γ1, . . . of Base. For any v ∈ V , we define a predi-
cate Pfinite(v) ≡ PfiniteMove(v) ∧ PfiniteEst(v), where PfiniteMove(v) and PfiniteEst(v) are also
predicates: PfiniteMove(v) holds if and only if v sends and receives tokens only finitely
many times in Γ, and PfiniteEst(v) holds if and only if v = vroot or v changes the value

OPODIS 2018

31:10 Self-Stabilizing Token Distribution with Constant-Space for Trees

of rv,p(v).est only finitely many times in Γ. In the remainder of this proof, we prove
(∀u ∈ C(v);Pfinite(u))⇒ Pfinite(v) for all v ∈ V . This proposition guarantees that (i) every
leaf w satisfies Pfinite(w) because it has no children, and (ii) every process v with height i > 0
satisfies Pfinite(v) if every process u with height i − 1 satisfies Pfinite(u). Thus, Pfinite(v′)
holds for all v by induction on the height hv of v, from which gives the lemma.

Let v ∈ V , and suppose Pfinite(u) holds for all u ∈ C(v). Then, v sends or receives no
token to or from its children, and ru,v.est remains unchanged for all u ∈ C(v) after some
point of the execution. Let γt 7→ γt+1 be the first step that v is selected after that point. (The
unfair daemon may never selects v after that point, but we need not consider this case because
then Pfinite(v) clearly holds.) In an execution after that step, say Γt+1 = γt+1, γt+2, . . . ,
process v sends a token to p(v) only if Diff (v) > 0, and p(v) sends a token to v only if
Diff (v) < 0. Hence, v sends and receives tokens at most |Diff (γt+1, v)| times in Γt+1, which
implies PfiniteMove(v). Thus, there exists t′ > t such that v never sends or receives a token
after γt′ . Since Diff (v) never changes after γt′ , Est(v) also never changes after γt′ . This
means that rv,p(v).est never changes after γt′+1, which implies PfiniteEst(v). Thus Pfinite(v)
holds in all cases. J

I Theorem 5. Algorithm Base is a silent self-stabilizing token distribution algorithm.

Proof. Let Γ = γ0, γ1, . . . be an execution of Base. Lemma 4 guarantees that γ ends at
its final configuration γf , that is, Γ = γ0, γ1, . . . , γf . No process is enabled in γf . Hence,
every process holds k tokens in its token store and no token exists in registers in γf because
otherwise some process must be enabled. J

We now give an asymptotically tight bound. on the number of redundant token moves of
Base. Recall that ε = min(k, l − k).

I Lemma 6. The number of redundant token moves in any execution of Base is O(nhε).

Proof. For any process v, let ∆+(v) =
∑
u∈Tv

max(Diff (u), 0) and ∆−(v) =
∑
u∈Tv

max(−Diff (u), 0). During the execution Γ = γ0, γ1, . . . of Base, each v sends a token
to p(v) at most ∆+(γ0, v) +nv times. This is because ∆+(v) is monotonically non-increasing,
except for the case that the parent of a process u ∈ Tv sends a token to u before the
first time u is selected by the scheduler, and ∆+(v) decrements by one every time v

sends a token to p(v). Similarly, p(v) sends a token to v at most ∆−(γ0, v) times in
Γ. Since ∆(γ0, v) = ∆+(γ0, v) − ∆−(γ0, v) and

∑
v∈V nv ≤ nh, the number of redun-

dant token moves in Γ is at most
∑
v∈V (∆+(γ0, v) + ∆−(γ0, v) + nv)−

∑
v∈V |∆(γ0, v)| =∑

v∈V (2 min(∆+(γ0, v),∆−(γ0, v))+nv) ≤
∑
v∈V (2 min(nv(l−k), nv ·k)+nv) = O(nhε). J

I Lemma 7. The number of redundant token moves in an execution of Base is Ω(nhε).

Proof. Consider the network shown in Figure 3 where 2x · 2y processes except for vroot are
divided into four sets A, B, C, and D, each of which consists of xy processes. Consider a
configuration where each process v in A∪D holds no token (i.e., Diff (v) = −k), each process
u in B ∪ C holds ` tokens (i.e., Diff (u) = `− k), and rwi,p(wi).est = rw′

i
,p(w′

i
) = 0 holds for

all i = 1, 2, . . . , y. In an execution starting from the configuration, the scheduler can select
processes only in A∪D∪ {vroot} until all processes in A∪D∪ {vroot} become disabled. Such
an execution must make at least min(x(x− 1)yk/2, x(x− 1)y(l − k)/2) = Ω(nhε) redundant
token moves. J

Y. Sudo, A. K.Datta, L. L. Larmore, and T. Masuzawa 31:11

C

!"##$

… … …… … … ……

%&

…

%'

…

%(

……

%&)

…

%')

…

%()

……

A B

D

*

*

+ +

Figure 3 A tree to prove Lemma 7.

Finally, we analyze the convergence time of Base. We first consider the values of rv,p(v).est.
Specifically, we prove that every execution of Base satisfies predicate Pest(v), which is defined
as follows, within 2hv rounds, for any process v other than vroot:

Pest(v) ≡ P1(v) ∧ P2(v) ∧ P3(v) ∧ P4(v) ∧Q1(v) ∧Q2(v) ∧Q3(v) ∧ ∀u ∈ C(v) : Pest(u)
P1(v) ≡ rv,p(v).est ∈ {1, 0+} ⇒ ∆(v) > 0 ∧Diff (v) ≥ 0
P2(v) ≡ rv,p(v).est = 0 ⇒ ∆(v) = 0 ∧Diff (v) = 0
P3(v) ≡ rv,p(v).est = 0− ⇒ ∆(v) ≤ 0 ∧Diff (v) ≤ 0
P4(v) ≡ rv,p(v).est = −1 ⇒ (∆(v) < 0 ∨ (∆(v) = 0 ∧ JustSent(p(v), v)))

∧Diff (v) ≤ 0,
Q1(v) ≡ rv,p(v).est ∈ {1, 0+} ⇒ ∀u ∈ Tv : ru,p(u).est ∈ {1, 0+, 0},
Q2(v) ≡ rv,p(v).est = 0 ⇒ ∀u ∈ Tv : ru,p(u).est = 0,
Q3(v) ≡ rv,p(v).est ∈ {0−,−1} ⇒ ∀u ∈ Tv : ru,p(u).est ∈ {0, 0−,−1}.

I Lemma 8. Let v ∈ V \ {vroot} and let γ 7→ γ′ be a step of Base where Pest(γ, v) holds.
Then, the following three statements hold:

γ(rv,p(v)).est = 0⇒ γ′(rv,p(v)).est = 0 (1)
γ(rv,p(v)).est ∈ {1, 0+} ⇒ γ′(rv,p(v)).est ∈ {1, 0+, 0} (2)

γ(rv,p(v)).est ∈ {0−,−1} ⇒ γ′(rv,p(v)).est ∈ {0, 0−,−1} (3)

Proof. If γ(rv,p(v)).est = 0, then γ′(rv,p(v)).est = 0 because Pest(γ, v) implies that
Diff (γ, v) = 0 and γ(ru,v).est = 0 for all u ∈ C(v). If γ(rv,p(v)).est ∈ {1, 0+}, then
γ′(rv,p(v)).est ∈ {1, 0+, 0} because Pest(γ, v) implies that Diff (γ, v) ≥ 0 and ∀u ∈ C(v) :
γ(ru,v).est ∈ {1, 0+, 0}. Similarly, γ′(rv,p(v)).est ∈ {0, 0−,−1} holds if γ(rv,p(v)).est ∈
{0−,−1}. J

I Lemma 9. Let v ∈ V . If Pest(u) holds for all u ∈ C(v), then once Pest(v) holds, Pest(v)
always holds.

OPODIS 2018

31:12 Self-Stabilizing Token Distribution with Constant-Space for Trees

Proof. Let γ 7→ γ′ be a step of Base where Pest(γ, v) holds and Pest(γ, u) and Pest(γ′, u)
hold for all u ∈ C(v). It suffices to show Pest(γ′, v) to prove the lemma. First, consider the
case of γ(rv,p(v)).est = ⊥. If rv,p(v).est remains ⊥ in step γ 7→ γ′, then Pest(γ′, v) trivially
holds. If rv,p(v).est becomes 1 or 0+ at the step, i.e., γ′(rv,p(v).est) ∈ {1, 0+}, then P1(γ′, v)
holds and γ(ru,v.est) ∈ {1, 0+, 0} for all u ∈ C(v) by the definition of Base. The latter
statement, and Lemma 8, imply Q1(γ′, v). Hence, Pest(γ′, v) holds if γ′(rv,p(v).est) ∈ {1, 0+}.
Similarly, Pest(γ′, v) holds if γ′(rv,p(v).est) ∈ {0, 0−,−1}. Next, suppose γ(rv,p(v)).est 6= ⊥.
In this case, γ′(rv,p(v)).est 6= ⊥ holds by Lemma 8. If γ′(rv,p(v)).est ∈ {1, 0+}, then
P1(γ′, v) trivially holds by the definition of Base, and Pest(γ, v) and Lemma 8 imply that
γ′(ru,v).est ∈ {1, 0+, 0} for all u ∈ C(v), which implies Q1(γ′, v). Hence, Pest(γ′, v) holds if
γ′(rv,p(v).est) ∈ {1, 0+}. Similarly, Pest(γ′, v) holds if γ′(rv,p(v).est) ∈ {0, 0−,−1}. J

I Lemma 10. Let v ∈ V . If Pest(u) holds for all u ∈ C(v), Pest(v) holds once v is selected
twice by the scheduler or v is disabled.

Proof. Consider an execution Γ = γ0, γ1, . . . of Base where Pest(γt, u) holds for all t ≥ 0
and all u ∈ C(v). During the execution, Pest(v) holds when v is disabled, by the definition
of algorithm Base, and by the assumption that Pest(u) holds for all u ∈ C(v). Hence, it
suffices to show that Pest(γt+1, v) or Pest(γt′+1, v) holds where γt 7→ γt+1 and γt′ 7→ γt′+1
are the first and the second steps where v is selected by the scheduler in Γ. Due to the token
passing mechanism, p(v) cannot send a token to rp(v),v in both steps. For any step γ 7→ γ′,
Pest(γ′, v) holds by the definition of Base if v is selected by the scheduler in γ 7→ γ′, p(v)
cannot send a token to rp(v),v at the step, and Pest(γ, u) ∧ Pest(γ′, u) holds for all u ∈ C(v).
Hence, Pest(γt+1, v) or Pest(γt′+1, v) holds. J

I Lemma 11. Let v ∈ V and let Γ = γ0, γ1, . . . be an execution of Base. The predicate
Pest(γt, v) holds for any t ≥ s(Γ, 2hv), i.e., Pest(v) always holds after 2hv rounds have elapsed.

Proof. By induction on hv. J

We define Cest to be the set of all configurations where Pest(v) holds for all v 6= vroot.
The following corollary directly follows from Lemma 9 and Lemma 10. Furthermore, Lemma
13, below trivially holds by the definition of Base. Note that Lemma 13 implies that no
redundant token move can occur after an execution reaches a configuration in Cest.

I Corollary 12. An execution of Base reaches a configuration of Cest within 2h rounds and
never deviates from Cest thereafter.

I Lemma 13. For any process v, |∆(v)| is monotonically non-increasing during an execution
of Base starting from a configuration in Cest.

In the rest of this section, we prove that every execution starting from a configuration in
Cest finishes in O(n`) rounds. Given v ∈ V , we define

R(v) = min
{
c ≥ 0

∣∣∣ ∀j = 1, 2, . . . , |∆(v)| :
∑
u∈C2(j+c)−1(v) |Diff (u)| ≥ j)

}
where Ci(v) is the set of processes in Tv whose distance from v is no greater than i (e.g.,
C0(v) = {v} and C1(v) = {v} ∪ C(v)). See Figure 4. In the left tree of the figure,
R(v) = 1 because C2j+1(v) holds at least j extra tokens (i.e.,

∑
u∈C2j+1(v) Diff (v) ≥ j)

for all j = 1, 2, 3, but C1 holds no extra token. In the right tree of the figure, R(v) = 3
because C2j+5(v) is short at least j tokens (i.e.,

∑
u∈C2j+5(v)(−Diff (v)) ≥ j) for j = 1, 2, 3,

but C7 is short only one token. Let Γ = γ0, γ1, . . . be an execution starting from a

Y. Sudo, A. K.Datta, L. L. Larmore, and T. Masuzawa 31:13

!"($)!&($)!'($)!(($)!)($)

+1

+2

+1

+3

$!"($)!&($)!'($)!(($)!)($)

-1

-2

$

Figure 4 A tree network Tv with ∆(v) > 0 (Left) A tree network with ∆(v) < 0 (Right). The
signed integer with process w indicates Diff (w), omitted when Diff (w) = 0.

configuration in Cest and v ∈ V \{vroot} be a process such that rv,p(v).est 6= ⊥ holds for some
configuration γt. Then either ∀u ∈ Tv : ru,p(u).est ∈ {1, 0+, 0} or ∀u ∈ Tv : ru,p(u).est ∈
{0, 0−,−1} holds for γt, γt+1, Intuitively, R(γt, v) has the following meaning: (i) when
γt(rv,p(v)).est ∈ {1, 0+}, v sends ∆(γt, v) tokens within 8(R(γt, v) + ∆(γt, v)) rounds in
γt, γt+1, . . . if p(v) always receives a token from rv,p(v) immediately after v sends a token
to rv,p(v), and (ii) when γt(rv,p(v)).est ∈ {0−,−1}, v receives −∆(γt, v) tokens within
8(R(γt, v)−∆(γt, v)) rounds in γt, γt+1, . . . if p(v) always sends a token to rp(v),v immediately
after IsReady(p(v), v) ∧ rp(v),v.est = −1 becomes true. For any process v ∈ V , we define
f(v) as follows:

f(v) =

R(v) + |∆(v)|+

∣∣{u ∈ Tv ∣∣ ru,p(u).est 6= 0
}∣∣ (v 6= vroot ∧ rv,p(v).est 6= ⊥)

l + 3 +
∑
u∈C(v) f(u) (v 6= vroot ∧ rv,p(v).est = ⊥)∑

u∈C(v) f(u) (v = vroot).

I Lemma 14. For any configuration γ, f(γ, vroot) = O(n`).

Proof. Let v be any process other than vroot. Define V ′ = {u ∈ Tv | γ(ru,p(u)).est 6= ⊥∧(u =
v ∨ γ(rp(u),p(p(u))).est = ⊥)}. Then, f(γ, v) ≤

∑
u∈Tv

(`+ 3) +
∑
u∈V ′(R(γ, u) + |∆(γ, u)|+

|{u′ ∈ Tu | γ(ru′,p(u′)).est 6= 0}|) ≤ nv(` + 3) +
∑
u∈V ′(hu + nu · ` + nu) ≤ nv(` + 3) +∑

u∈V ′ nu(`+ 2) ≤ nv(2`+ 5). Therefore, f(γ, vroot) ≤
∑
v∈C(vroot) nv(2`+ 5) = O(n`). J

Note that f(v) is monotonically non-increasing during any execution starting from a
configuration in Cest because both R(v) + |∆(v)| and |{u ∈ Tv | ru,p(u).est 6= 0}| are
monotonically non-increasing once rv,p(v) 6= ⊥ holds in such an execution. Moreover, detailed
analysis gives Lemma 15. whose proof are omitted due to the lack of space.

I Lemma 15. Let Γ = γ0, γ1, . . . be an execution starting from Cest. Then, f(vroot) decre-
ments at least by one in eight rounds of Γ as long as f(vroot) > 0.

I Lemma 16. Every execution Γ of Base ends within O(n`) rounds.

Proof. Corollary 12, Lemma 14 and Lemma 15 imply that Γ reaches a configuration where
rv,p(v).est = 0 and ∆(v) = 0 for all v ∈ V \ {vroot} within O(n`) rounds. Pushing tokens to
or pulling tokens from the external store, after an additional O(`) rounds Diff (vroot) = 0. J

OPODIS 2018

31:14 Self-Stabilizing Token Distribution with Constant-Space for Trees

I Theorem 17. Algorithm Base is a silent and self-stabilizing token distribution algorithm,
which uses no work space per process and only constant work space per register, converges in
O(n`) rounds, and causes Θ(nhε) redundant token moves.

4.2 Algorithm SyncTokenDist
Due to the lack of space, we present only an outline of the algorithm SyncTokenDist which
reduces the number of redundant token moves of Base. The key idea is simple. Corollary 12
and Lemma 13 guarantee that every execution of Base enters a configuration in Cest within 2h
rounds and no redundant token moves happen thereafter. However, some processes can send
or receive many tokens in the first 2h rounds, which makes Ω(nhε) redundant token moves
in total in the worst case (Lemma 7). Algorithm SyncTokenDist simulates an execution
of Base with a simplified version of the Z3 synchronizer [5], which loosely synchronizes an
execution of Base so that the following property holds.

For any integer x, if a process executes the procedure of Base at least x+ 2 times,
then every neighboring process of the process must execute the procedure of Base at
least x times.

This property and Lemma 10 guarantee that every process v can execute the procedure of
Base at most O(h) times until a configuration in Cest is reached, after which no redundant
token moves happen.

Specifically, in SyncTokenDist, every process v has variable v.clock ∈ {0, 1, 2} and
rv,u.clock ∈ {0, 1, 2} for every u ∈ N(v). It always copies the latest value of v.clock to
rv,u.clock for all u ∈ N(v). It also has all the variables of Base. We say that a process u is
ahead of v if u.clock = v.clock+1 (mod 3). Process v increments its clock when it is ahead
of no neighbors and it has a neighbor that is ahead of v or when v is enabled to execute
the procedure of Base and v.clock = u.clock holds for all neighbors u ∈ N(v). Process v
executes the procedure of Base every time v increments its clock. It is easy to see that this
simple algorithm satisfies the above property, hence we obtain the following theorem.

I Theorem 18. Algorithm SyncTokenDist is a silent and self-stabilizing token distribution
algorithm, which uses only constant work space per process and per register, converges in
O(n`) rounds, and causes O(nh) redundant token moves.

4.3 Algorithm PIFTokenDist
In this section, we present PIFTokenDist, which reduces the number of redundant token
moves of Base from O(nhε) to O(n) but increases the convergence time from O(n`) to
O(nh`). Algorithm PIFTokenDist uses Propagation of Information with Feedback (PIF)
scheme [3] to reduce the number of redundant token moves. For our purpose, we use a
simplified version of PIF. The pseudo code is shown in Algorithm 2. Each process v has
a local variable v.wave ∈ {0, 1, 2}, a shared variable rv,u.wave ∈ {0, 1, 2} for all u ∈ N(v),
and all the variables of Base. Process v always copies the latest value of v.wave to rv,u.wave
for all u ∈ N(v) (Line 4). An execution of PIFTokenDist repeats the cycle of three waves –
the 0-wave, the 1-wave, and the 2-wave (Figure 5). Once vroot.wave = 0, the zero value is
propagated from vroot to leaves (Line 1, the 0-value). In parallel, each process v changes
v.wave from 0 to 1 after verifying that all its children already have the zero value in variable
wave (Line 2, the 1-wave). When the 1-wave reaches a leaf, the wave bounces back to the
root, changing the wave-value of processes from 1 to 2 (Line 3, the 2-wave). When the 2-wave
reaches the root, it resets vroot.wave to 0, thus the next cycle begins. A process v executes

Y. Sudo, A. K.Datta, L. L. Larmore, and T. Masuzawa 31:15

0

2

1

0

0

0

1

0

0

1

1 0

1

0

!"##$

the 0-wave

1

0

1

1

0

0

0

1

1

0

1 0

1

1

!"##$

the 1-wave

1

2

2

1

1

2

2

2

2

2

2 2

2

2

!"##$

the 2-wave

Figure 5 PIF waves of PIFTokenDist. A number in a circle represents the value of variable wave.
Note that the 0-wave and the 1-wave run simultaneously.

Algorithm 2 PIFTokenDist.
[Actions of process v]
1: v.wave← 0 if (v = vroot ∧ v.wave = 2) ∨ (v 6= vroot ∧ rp(v),v.wave = 0)
2: v.wave← 1 if (v.wave = 0)∧ (v = vroot ∨ rp(v),v.wave = 1)∧ ∀u ∈ C(v) : ru,v.wave = 0)
3: v.wave← 2 and execute the procedure of Base if (v.wave = 1)∧(∀u ∈ C(v) : ru,v.wave =

2)
4: rv,u.wave← v.wave for all u ∈ N(v)

the procedure of Base every time it receives the 2-wave, that is, every time it changes v.wave
from 1 to 2 (Line 3).

It is easy to see that every execution of PIFTokenDist reaches a configuration from
which the cycle of three waves is repeated forever. Furthermore, the above PIF mechanism
guarantees that, for any path v0, v1, . . . , vρ such that v0 is a leaf, each process vi (1 ≤ i ≤ ρ)
receives the 2-wave at least once in the order of v0, v1, . . . , vρ before vρ receives the 2-
wave twice. Therefore, it holds by Lemma 10 that an execution of PIFTokenDist reaches
a configuration in Cest before some process executes the procedure of Base more than
three times. Hence, the number of redundant token moves is O(n) in total. However, the
convergence time increases from O(n`) to O(nh`) because it takes O(h) rounds between
every two consecutive executions of the procedure of Base at each process in an execution of
PIFTokenDist. PIFTokenDist, shown in Algorithm 2 is not silent, but it can made silent by
slightly modifying the algorithm, such that the root begins the 0-wave at Line 1 only when
it detects that the simulated algorithm (Base) is not terminated. This modification is easily
implemented by using the enabled-signal-propagation technique presented in [4].

I Theorem 19. PIFTokenDist is a silent and self-stabilizing token distribution algorithm,
which uses constant work space per process and per register, converges in O(nh`) rounds,
and permits O(n) redundant token moves.

5 Conclusion

We have given self-stabilizing and silent distributed algorithms for token distribution for
rooted tree networks. The base algorithm Base converges in O(n`) asynchronous rounds and
causes O(nhε) redundant token moves. Algorithms SyncTokenDist and PIFTokenDist use a
synchronizer and a PIF scheme, respectively. Algorithm SyncTokenDist reduces the number
of redundant token moves to O(nh) without increasing convergence time while PIFTokenDist
reduces the number of redundant token moves to O(n), but increases the convergence time

OPODIS 2018

31:16 Self-Stabilizing Token Distribution with Constant-Space for Trees

to O(nh`) rounds. All of the three algorithms uses constant memory space for each process
and each link register.

References
1 Anish Arora and Mohamed G. Gouda. Load balancing: An exercise in constrainted conver-

gence. In Proceedings of the 9th International Workshop on Distributed Algorithms, pages
183–197, 1995.

2 Andrei Z. Broder, Alan M. Frieze, Eli Shamir, and Eli Upfal. Near-perfect token distri-
bution. In Proceedings of the 19th International Colloquium on Automata, Languages and
Programming, pages 308–317, 1992.

3 Alain Bui, Ajoy K Datta, Franck Petit, and Vincent Villain. Snap-stabilization and PIF in
tree networks. Distributed Computing, 20(1):3–19, 2007.

4 Ajoy K Datta, Laurence L Larmore, Toshimitsu Masuzawa, and Yuichi Sudo. A self-
stabilizing minimal k-grouping algorithm. In Proceedings of the 18th International Confer-
ence on Distributed Computing and Networking, pages 3:1–3:10. ACM, 2017.

5 Ajoy K. Datta, Lawrence L. Larmore, and Toshimitsu Masuzawa. Constant space self-
stabilizing center finding in anonymous tree networks. In Proceedings of the International
Conference on Distributed Computing and Networking, pages 38:1–38:10, 2015.

6 EW Dijkstra. Self stabilizing systems in spite of distributed control. Communications of
the Association of Computing Machinery, 17:643–644, 1974.

7 Bhaskar Ghosh, Frank Thomson Leighton, Bruce M. Maggs, S. Muthukrishnan, C. Greg
Plaxton, Rajmohan Rajaraman, Andréa W. Richa, Robert Endre Tarjan, and David Zuck-
erman. Tight analyses of two local load balancing algorithms. In Proceedings of the 27th
Annual ACM Symposium on Theory of Computing, pages 548–558, 1995.

8 Kieran T. Herley. A note on the token distribution problem. Inf. Process. Lett., 38(6):329–
334, 1991.

9 Michael E. Houle, Antonios Symvonis, and David R. Wood. Dimension-exchange algorithms
for load balancing on trees. In Proceedings of the 9th International Colloquium on Structural
Information and Communication Complexity, pages 181–196, 2002.

10 Michael E. Houle, Ewan D. Tempero, and Gavin Turner. Optimal dimension-exchange
token distribution on complete binary trees. Theor. Comput. Sci., 220(2):363–376, 1999.

11 Michael E. Houle and Gavin Turner. Dimension-exchange token distribution on the mesh
and the torus. Parallel Computing, 24(2):247–265, 1998.

12 Luciano Margara, Alessandro Pistocchi, and Marco Vassura. Perfect token distribution
on trees. In Proceedings of Structural Information and Communication Complexity, 11th
International Colloquium, pages 221–232, 2004.

13 D. Peleg. Distributed computing: a locality-sensitive approach, volume 5. Society for Indus-
trial Mathematics, 2000.

14 David Peleg and Eli Upfal. The generalized packet routing problem. Theor. Comput. Sci.,
53:281–293, 1987.

15 David Peleg and Eli Upfal. The token distribution problem. SIAM J. Comput., 18(2):229–
243, 1989.

16 Yuichi Sudo, Ajoy K. Datta, Laurence L. Larmore, and Toshimitsu Masuzawa. Constant-
space self-stabilizing token distribution in trees. In Proceedings of 25th International Col-
loquium on Structural Information and Communication Complexity (SIROCCO), pages
25–29, 2018.

	Self-Stabilizing Token Distribution with Constant-Space for Trees
	Repository Citation

	Introduction
	Related Work

	Preliminaries
	Model of Computation
	Problem Specification
	Complexities

	Lower Bounds
	Constant-Space Algorithms for Self-stabilizing Token Distribution
	Algorithm Base
	Algorithm SyncTokenDist
	Algorithm PIFTokenDist

	Conclusion

