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Abstract
We give a silent self-stabilizing protocol for computing a maximum matching in an anonymous
network with a tree topology. The round complexity of our protocol is Opdiamq, where diam is
the diameter of the network, and the step complexity is Opn diamq, where n is the number of
processes in the network. The working space complexity is Op1q per process, although the output
necessarily takes Oplog δq space per process, where δ is the degree of that process. To implement
parent pointers in constant space, regardless of degree, we use the cyclic Abelian group Z7.
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1 Introduction

Self-stabilization [5] is a paradigm for enhancing autonomous adaptability of distributed
systems to network dynamics, such as transient faults and topology changes. A self-stabilizing
system is guaranteed to regain its intended (or legal) behavior when the system is arbitrarily
disturbed. Several fundamental problems have been solved by self-stabilizing algorithms,
including leader election, spanning tree construction, mutual exclusion, node/edge coloring,
and so forth. Maximum or maximal matching is one of the most investigated of these
problems et al. [8].

1.1 Related Work
The first self-stabilizing algorithm for maximal matching was given by Hsu et al. [10]. The
algorithm works for arbitrary anonymous networks under the central daemon, where no two
processes can act simultaneously. Efficiency under the central daemon is usually measured by
the number of steps required for convergence to a legitimate configuration. Their algorithm
takes Opn3q steps, where n is the number of processes in the system. This result was improved
in [9, 12, 15]. Hedetniemi et al. give an algorithm which takes Opmq steps where m is the

∗ This work was supported in part by JSPS KAKENHI, Grant Number (B)26280022.

© Ajoy K. Datta, Lawrence L. Larmore, and Toshimitsu Masuzawa;
licensed under Creative Commons License CC-BY

19th International Conference on Principles of Distributed Systems (OPODIS 2015).
Editors: Emmanuelle Anceaume, Christian Cachin, and Maria Potop-Gradinariu; Article No. 16; pp. 16:1–16:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62922843?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.OPODIS.2015.16
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


16:2 Maximum Matching for Anonymous Trees with Constant Space per Process

number of edges in the system [9]. A synchronous version of the algorithm with round
complexity Opnq is given by Goddard et al. [6].

A self-stabilizing algorithm for maximal matching in arbitrary networks under the
read/write daemon, where only a single read or write is permitted during an atomic step,
was given by Chattopadhyay et al. [3]. The algorithm converges in Opnq (asynchronous)
rounds, provided all processes have identifiers, and no two processes within distance two
have the same identifier. The same paper also gives a randomized self-stabilizing algorithm
for assigning the locally distinct identifiers in Op1q expected rounds. With the assumption
of distinct identifiers within distance two, a self-stabilizing maximal matching algorithm
for arbitrary networks under the distributed daemon, where any number of processes can
act simultaneously, which converges in Opnq rounds and Opmq steps, was given by Manne
et al. [13].

A number of self-stabilizing maximum matching algorithms have been given. Karaata
and Saleh give a self-stabilizing algorithm for anonymous tree networks, under the central
daemon, which converges in Opn4q steps [11]. A self-stabilizing algorithm for tree networks
under the read/write daemon, which converges in Opn2q steps, is given by Blair and Manne
[2]. For anonymous bipartite networks, a self-stabilizing algorithms converging in Opn2q

rounds under the central daemon is given by Chattopadhyay et al. [3].
A maximal matching is defined to be 1-maximal if the size of matching cannot be increased

by replacing one edge in the matching with two other edges. Any 1-maximal matching is a
2
3 -approximation of the maximum matching, while an arbitrary maximal matching is only a
1
2 -approximation to maximum.

A self-stabilizing 1-maximal matching algorithm, under the central daemon, for anonymous
trees, and for rings with length not divisible by three, which converges in Opn4q rounds, is
given by Goddard et al. [7]. The same paper also shows that there is no self-stabilizing
1-maximal matching algorithm for anonymous rings of length a multiple of three. These
results are generalized by Asada and Inoue, who give a self-stabilizing 1-maximal matching
algorithm for any anonymous network under the central daemon, provided that network has
no cycle of length divisible by three, which converges in Opmq steps [1].

For non-anonymous arbitrary networks, a self-stabilizing 1-maximal matching algorithm
under the distributed daemon is given by Manne et al. [14]. Their algorithm converges in
Opn2q rounds, but requires exponentially many steps in the worst case.

1.2 Contribution

We use of virtual pointers, in which we indicate a parental relation between neighboring
processes by assigning each process a label of finite size, that is, written with finitely many
bits, where the parental relation is a function of the labels of the two processes. In this
paper, each label, which we call level, is a member of the cyclic Abelian group Z7, and x is
a parent of y if the difference of the two values of level is in a certain range. We are able
to maintain constant space per process by eliminating the standard parent pointers, which
require Oplog δq space per process, where δ is its degree.

Match builds a spanning tree, or a spanning structure consisting of two trees, in the
network. Match then uses a bottom-up dynamic program to choose a maximum matching
for the network. The working space complexity of Match is Op1q per process, regardless of
degree, the round complexity is Opdiamq, where diam is the diameter of the network, and the
step complexity is Opn diamq. Our use of Z7 is similar to the use of Z5 for virtual pointers
in [4]. The output must use Oplog δq space per process, where δ is the degree of that process.



A.K. Datta, L. L. Larmore, and T. Masuzawa 16:3

1.3 Outline
In Section 2, we give some basic definitions, and describe our model of computation. In
Section 4, we formally define Match. In Section 5, we prove that Match is correct. In
Section 6 we prove that Match takes Opdiamq rounds, while in Section 7, we prove that
Match takes Opn diamq steps. Section 8 concludes the paper.

2 Preliminaries

We say that a network is undirected if the edges have no specified orientation, i.e., that
the edge tx, yu is the same as the edge ty, xu. We say that a network is anonymous if the
processes have no identifiers. We say that a network is a tree if it is connected and has no
cycles. The algorithm we give in this paper assumes an undirected anonymous tree.

2.1 Model of Computation
We use the shared memory model of computation [5], meaning that each process can read its
own registers and those of its neighbors, and can change only its own registers. A distributed
algorithm consists of a program for each process, and that program consists of a finite set
of actions. Each action for a process x has a guard, which is a predicate (i.e.,, Boolean
function) on the registers of x and its neighbors, together with a statement, which is simply
the assignment, or reassignment, of one or more registers of x. If the guard of an action of
x is true, then we say that action is enabled, and we say x is enabled if at least one of its
actions is enabled.

We assume the unfair distributed daemon. If at least one process is enabled, the daemon
selects at least one of these enabled processes. Each selected process executes one of its
enabled actions, and that concludes one step. We describe the daemon as unfair because an
enabled process need never be selected, unless it becomes the only enabled process.

We will assume that there is a set F of configurations which we call the legitimate
configurations. (We call the remaining configurations illegitimate.) F satisfies two conditions:
Closure: No action can change a legitimate configuration to an illegitimate configuration.
Correctness: Each legitimate configuration satisfies the output conditions of the problem.

A configuration is final if no process is enabled at that configuration. An algorithm is silent
if every computation ends at a final configuration.

3 Overview of Match

We are given an anonymous unoriented network G with a tree topology. The first phase of
Match is to build a rooted spanning tree for G, or possibly two rooted trees joined at the
roots which together span G. During the second phase (which actually begins before the
first phase is finished) we use the tree, or trees, to define a maximum matching.

At any given configuration of Match, every neighbor of a process x is either a child of x,
a parent of x, or a peer of x. From a possibly chaotic initial configuration, Match organizes
G into one or two trees; if there are two trees, the roots are peers of each other.

The maximum matching itself is then constructed by a bottom-up wave of the tree (or
trees). Each process is assigned the Boolean label 0 or 1, which we call flag, as follows.
Leaves are assigned 0. A process is assigned 1 if it has a child labeled 0, otherwise 0. At the
end, every process labeled 1 is matched with one of its children labeled 0, while two roots
are matched with each other if both are labeled 0.
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16:4 Maximum Matching for Anonymous Trees with Constant Space per Process

Virtual Pointers. It is typical to define rooted trees by using parent pointers. But we need
to maintain Op1q space complexity at each process, regardless of degree. For that reason, we
express parent/child relations using virtual pointers. These virtual pointers are defined by
storing a single variable, x.level at each process. The value of x.level will be an element of
Z7, the cyclic Abelian group of order 7, and such requires only three bits to store.

More formally, if i, j P Z7 “ t0, 1, 2, 3, 4, 5, 6u, we say that i ă j, and j ą i, if j ´ i P

t1, 2, 3u, where addition and subtraction are in the Abelian group, e.g., 2 ă 3, 2 ă 4, 2 ă 5,
and 6 ă 2. This relation are not transitive, since 1 ă 3 ă 5, but 5 ă 1. If y is a neighbor of
x in the network we say that y is a child of x if y.level ą x.level. Similarly, y is a parent of x
if x is a child of y, i.e., y.level ă x.level, while y is a peer of x if y.level “ x.level. Thus, to
change the parent/child/peer relationships, we simply change the values of level.

How Virtual Pointers are Used. An algorithm which uses local addresses for pointers never
has to change its parent pointer unless it changes its parent. That simple rule does not hold for
Z7-virtual pointers. We say that parent pxq “ y if y.level ă x.level. A problem then arises if it
is necessary to change the level of either x or y. If x.level “ 2`y.level, the “ideal” parent/child
relation, either x.level or y.level may be either incremented or decremented without changing
the parent/child relationship. However, if x.level “ 1 ` y.level, decrementation of x.level
would cause x and y to become peers; similarly, if x.level “ 3` y.level, incrementation of
x.level would cause the parent/child relation to be reversed: x would become the parent of y.
For this reason, whenever parent pxq “ y and x.level ‰ 2` y.level, x tries to either increment
or decrement its level to restore the ideal. Until that ideal is restored, y is not enabled to
execute an action which changes its level.

Think of the link between parent and child as a spring which has an ideal length (namely
2) but whose length can be stretched to 3 or compressed to 1. After that distortion, the
spring tries to restore its length to the ideal 2.

We use the group Z7 because there is no smaller group which allows the same flexibility
in both directions, namely both compression and stretching of the parent/child link.

3.1 Approach
In order to describe how Match creates a tree, or trees, we need to introduce an abstract
function Level pxq. Level is an integer function, and has the following properties:
1. The standard projection ZÑ Z7 maps Level pxq to x.level. For example, if Level pxq “ 11

then x.level “ 4. i.e.,
2. If y P Npxq, then |Level pyq ´ Level pxq| ď 3.
3. Level pxq increments (decrements) at each step at which x.level increments (decrements).

We also introduce the abstract function Min_Level “ min tLevel pxq : x P Gu. Level can
be initialized arbitrarily; however in Lemma 6 below, we prove that Min_Level is constant,
and thus we can assume, without loss of generality, that Min_Level “ 0, which implies that,
during the computation, all values of Level are non-negative. Eventually, Level pxq “ 2 dpxq
for each process, where dpxq is the distance, through G, from x to the root of the tree, or
the nearer root if there are two trees.

4 Formal Definition of Match

Variables and functions of Match. We use the dot notation, such as x.var , for a variable of
x, while we use the normal functional notation such as Func pxq, for a function of x.
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1. x.level P Z7. This is the variable that allows us to define virtual parent pointers using
constant space per process: x is the parent of y if x.level ă y.level.

2. Chldrn pxq “ ty P Npxq : y.level ą x.levelu, the children of x, where Npxq is the set of
neighbors of x.

3. Peers pxq “ ty P Npxq : y.level “ x.levelu, the peers of x, those neighbors at the same
level as x in the spanning tree.

4. Prnts pxq “ ty P Npxq : y.level ă x.levelu, the parents of x, those neighbors above x in
the spanning tree.

5. Children_Ok pxq ” @y P Chldrn pxqpy.level “ 2` x.levelq, Boolean. This means that all
children of x are in the “optimum" position, meaning two levels below x.

6. Class pxq P tI, II, III, IV,Vu, which we define below. At a final configuration, if there is
one root, it has Class I, while if there are two roots, they each have Class II; while in
both cases, all other processes have Class III.

7. x.flag, Boolean. This variable is used in the bottom-up protocol which determines the
matched pairs. Except for the possibility of two roots being matched, all matched pairs
consist of processes with opposite values of flag.
The values of flag are computed using a bottom-up dynamic program, and those values
define a maximum matching, once the structure of the rooted spanning tree, or trees, is
finalized.

8. x.partner P Npxq Y tKu, the partner that x is matched to. If x.partner “ K, then x

is unmatched. This variable, which is the output of the protocol, takes Oplog δq space,
where δ is the degree of x.

Classes of Processes. At each configuration, each process belongs to one of five Classes;
its Class is defined by its number of parents and peers, as given by the table below. The
Class of a process is arguably its most important property.

# parents # peers Class
0 0 I
0 1 II
1 0 III
0 ě 2 IV
1 ě 1 V
ě 2 arbitrary V

We write peerpxq for the sole peer of a process in Class II, and we write parent pxq for
the sole parent of a process in Class III.

For any process x, let Tx be the subtree rooted at x, namely the set consisting of x,
its children, its children’s children, etc.. We define a process x to be regular if Class pxq P
tI, II, IIIu and all descendants of x have Class III. At a final configuration, all processes are
regular.

We now define additional variables and functions computable by a process.
9. x.rglr , Boolean. This variable means that x currently “believes” that it is regular.

We define a process to be strongly regular if it is regular and y.rglr for all y P Tx.
10. Rglr pxq ” pClass pxq P tI, II, IIIuq ^ p@y P Chldrn pxqy.rglrq, Boolean. This predicate is

used to update x.rglr .

11. Flagpxq “
"

true if pClass pxq P tI, II, IIIuq ^ pDy P Chldrn pxq y.flag “ falseq
false otherwise

This predicate is used to update x.flag.

OPODIS 2015



16:6 Maximum Matching for Anonymous Trees with Constant Space per Process

12. Partnerpxq P Npxq Y tKu, the process that x should be matched with. If x.flag “ true,
then Partnerpxq is some child of x whose flag is false, if any, while if Class pxq “ II,
x.flag “ false, and peerpxq.flag “ false, then Partnerpxq “ peerpxq. If Class pxq “ III,
x.flag “ false, and parent pxq.partner “ x, then Partnerpxq “ parent pxq. In all other
cases, Partnerpxq “ K.

The variable x.partner , and the corresponding function Partnerpxq, use Oplog δq space
per process, but are used only for output. All intermediate computations use Op1q space per
process, hence we say that Match uses constant working space per process.

Regular, Rglr , and rglr . We have used the word “regular,” or contractions thereof, in three
different ways. Regularity is an abstract property, not computable by any process during the
execution of Match; x.rglr is a working estimate of the regularity of x.

Code of Match

We now present the protocol Match for an arbitrary process x, in program form. We define
a process x to be enabled if execution of the protocol by x results in the change of at least
one variable of x. At each step, the daemon selects an arbitrary non-empty set of enabled
processes; if there are no enabled processes, the configuration is final.

1: if x.rglr ‰ Rglr pxq then
2: x.rglr Ð Rglr pxq
3: else if Children_Ok pxq then
4: if pClass pxq “ IIq ^ x.rglr ^ peerpxq.rglr then
5: x.level Ð x.level ` 1
6: else if pClass pxq “ IIIq ^ x.rglr ^ px.level “ parent pxq.level ` 1q then
7: x.level Ð x.level ` 1
8: else if pClass pxq “ IIIq ^ x.rglr ^ px.level “ parent pxq.level ` 3q then
9: x.level Ð x.level ´ 1

10: else if pClass pxq “ Vq ^  x.rglr ^ py P Peers pxq Y Prnts pxq ùñ  y.rglrq then
11: x.level Ð x.level ´ 1
12: end if
13: end if
14: if x.rglr ^ px.flag ‰ Flagpxqq then
15: x.flag Ð Flagpxq
16: else if x.rglr ^ x.partner ‰ Partnerpxq then
17: x.partner Ð Partnerpxq
18: end if

Notation. In our discussion, we will say that a process executes an action if it executes
one of the lines of the code which changes one of its variables, i.e., Line 2, 5, 7, 9, 11, 15, or
17. Note that a process is enabled to execute at most one of those actions per step.

We say that a process executes a level action if it executes a line that changes its level,
namely Line 5, 7, 9, or 11.

Intuitive Explanation of the Actions

Line 5 increases the level of a regular process, and changes its Class from II to III, provided
its peer is not regular; its peer then becomes its parent. In Figure 1, b executes the action at
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Figure 1 Example computation of Match, where G consists of twelve processes, named
a, b, . . . k, l. Values of flag are indicated under the processes. Process x is shown by an open
dot if x.rglr , otherwise a solid dot. Configuration (a) is “arbitrary.” Processes d and e are computed
to be roots, though neither has level zero in the initial configuration. We assume the synchronous
daemon, i.e., at each step every enabled process executes. Several steps are skipped between (m)
and the final configuration (n). To avoid clutter, matching actions, i.e., executions of Line 17, are
not shown except in the last figure. The matched pairs are ta, bu, tc, du, te, fu, tg, iu, th, ju, and
tk, lu.

(f), h executes the action at (g), c executes the action at (i), and f executes the action at (j).
Lines 7 and 9 adjust the levels of regular processes of Class III without changing their

virtual pointers; in those cases, a process x adjusts the difference between its level and that
of its parent from 1 or 3 to 2; execution of those lines has no effect on the parent/child/peer
structure of the network. There are many examples of those actions illustrated in Figure 1,
such as k at (c). In fact, at each step from (b) to (m), at least two processes of Class III
execute a level action.

Of the actions shown in Figure 1, Line 15 has the lowest priority, meaning that the value
of x.flag cannot change if x executes Line 2 or any level action. All x.flag have reached their
final values, as shown in (m), before the level actions are finished. The level actions are the
last to be completed in the example, and the final configuration is shown in (n).

Execution of Line 11 of the code decreases the level of process of Class V. We do not allow
a process x to execute that action unless y.rglr “ false for all y P Peers pxq Y Prnts pxq.
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Level

0

1

2

3

4

a b c d e f

0 0

1 0

0 1

Figure 2 An example final configuration of Match, where G is a tree consisting of six processes,
named a, b, . . . f . Values of flag are indicated under the processes. The matched pairs are tb, cu

and te, fu, while a and d remain unmatched.

There are a number of examples of this action in Figure 1, such as processes d and e at (b),
d and f at (c), c and e at (d).

The Kernel. Let K be the set of all processes of Classes I, II, IV, and V, together with all
irregular processes of Class III. We call K the kernel. The purpose of Line 11 is to squeeze K
into the 0th level. Once that has happened, as shown in Figure 1(g), all irregular processes
have Class IV, and K is a tree subnetwork (actually merely a chain in Figure 1) of G whose
leaves all have Class II. In the remaining steps, that subnetwork will be decremented as its
leaves change Class from II to III.

4.1 Top Level Summary of Match
At the top level, Match executes the following level actions.
1. All processes in the K move to the 0th level, executing Line 11. K will be a tree.
2. The leaves of that tree will all have Class II. Each Class II process will increase its level

by executing Line 5, deleting itself from the kernel, and leaving the 0th level.
3. Eventually, the kernel will consist of either one or two processes at the 0th level. If one

process, it will be the root. If two, and rglr “ true for both, they will be co-roots.
4. As all these level actions are proceeding, regular processes will continually execute Lines 7

and 9, continually adjusting differences between the levels of parents and children to
make the links ideal, so that the other level actions will be enabled.

5. The Flag and Matching actions, Lines 15 and 17, implement a simple dynamic program
that assigns a flag value for each process, and then chooses a maximum matching in a
rooted tree. A process of flag 1 always has at least one child of flag 0, and matches with
it. A process of flag 0 cannot match with any of its children. In the example shown in
Figure 1, there are no unmatched processes. However, if a process has more than one
child of flag 0, one of those children will remain unmatched, as indicated in Figure 2
below; in that figure b has flag 1 and its children both have flag 0; thus, one of those
children must remain unmatched.

6. At the very end of the dynamic program, if there are two roots, they match with each
other if they both have flag 0. A root with flag 1 matches with one of its children, as per
the above rule. Thus, if one root has flag 1 and the other 0, the root with flag 0 remains
unmatched, as shown in Figure 2 below.

4.2 Legitimate Configurations of Match
A legitimate configuration consists of one or two trees, whose root, or roots, are at level zero.
All parental links are ideal, meaning that the difference in levels between parent and child
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is two in every case. Furthermore, in a legitimate configuration, x.rglr “ true for all x. It
follows that there is either one process of Class I or two neighboring processes of Class II,
and all other processes are of Class III. In addition, and x.flag “ Flagpxq for all x, and all
processes have matched with their final partners, or remain unmatched.

Every final configuration is legitimate, as we prove in Lemma 1. However, a legitimate
configuration may not be final. For example, Figure 1(m) shows a legitimate but non-final
configuration. The legitimate configuration is not unique. There is no general polynomial
bound on the number of distinct maximum matchings of a tree graph.

5 Correctness

Correctness of Match follows from the following two statements:
1. Every final configuration of Match is legitimate, as we prove in Lemma 1 below,
2. There is no infinite computation of Match, as we prove in Lemma 12 below.

I Lemma 1. Any final configuration of Match is legitimate.

Proof. Suppose that the current configuration of Match is final, i.e., no process is enabled
to execute any action of the code.
I Claim 2. x.rglr “ true for any process x.

Proof of Claim 2. Suppose not. Let L “ max tLevel pxq :  x.rglru, and let x be a process
of level L such that x.rglr “ false. Thus y.rglr “ true for all y P Chldrn pxq. Hence, if the
Class of x is I, II, or III, Rglr pxq “ true, contradiction.
I Claim 3. If Class pxq “ V then x is enabled.

Proof of Claim 3. If y P Prnts pxq and y.rglr , then y is enabled to execute Line 2, contradic-
tion. If y P Peers pxq, then Class pyq “ IV, hence y.rglr “ false, because otherwise y would
be enabled. Thus, x is enabled. J

The only remaining possibility is that Class pxq “ IV. Since each process at level L has
Class IV, and each has at least two peers also at level L, the subgraph of processes at level
L must contain a cycle, contradiction. This completes the proof of Claim 2. J

By Claim 2 and since x.rglr “ Rglr pxq for all x, there are no processes of Class IV or V.
Since any process of Class III has a parent, any process at Level zero must have Class I or II.
I Claim 4. If Level pxq “ 0 and Class pxq “ I, then all processes other than x have Class III
and are descendants of x.

Proof of Claim 4. Suppose y ‰ x is a process, and y is not a descendant of x. Let σ be the
unique path through G from x to y, and let z be the process of maximum level in σ which is
closest to x. If z ‰ y, then z has Class V, contradiction. Thus, z “ y, and y is a descendant
of x. Since all processes are descendants of x, all other processes must have Class III. J

I Claim 5. If there is no process of Class I at level zero, then there are two processes of Class
II at level zero which are peers of each other, and every other process has Class III.

Proof of Claim 5. There must be a process x of Class II at level zero. Let y “ peerpxq. Let
z be any other process, and let σ be the unique path through G from z to x. By an argument
similar to that in the proof of Claim 4, z is a descendant of y if σ passes through y, and
otherwise is a descendant of x. In either case Class pzq “ III. J

The lemma follows from Claims 4 and 5. J
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I Lemma 6. Min_Level does not change during any computation of Match.

Proof. By contradiction. Suppose Min_Level decreases during a step. Then there is some
process x such that Level pxq “ Min_Level and Level pxq decreases at the next step. Since no
process has a level less than Level pxq, we know that Class pxq is neither III nor V. However,
the guards of the actions do not permit x.level to decrease if x belongs to any other Class.
Thus, Min_Level does not decrease.

Now, suppose Min_Level increases during the step. For any process x such that
Level pxq “ M “ Min_Level before the step, Level pxq must increase, hence Class pxq must
be either II or III. But x has no parent, hence Class pxq “ II, which implies that x has a
peer. Since peerpxq.rglr “ false, Level ppeerpxqq cannot decrease, and thus there is still a
process whose level is M after the step, contradiction. J

I Remark 7. If a process x is regular at some step, then x is regular at all subsequent steps.

No Computational Cycle. In this paragraph, we assume that Ξ is a non-trivial computa-
tional cycle of Match. Our goal is to prove that Ξ cannot exist.

I Lemma 8. No process changes its regularity during Ξ.

Proof. By Remark 7, a process does not change from regular to irregular. Since every step
of Ξ must be reversible, no process can change from irregular to regular during Ξ. J

I Lemma 9. If x.rglr “ true at any step of Ξ, then x is regular.

Proof. By contradiction. Suppose the lemma is false. Let S be the set of ordered triples
px, t, Lq such that the process x is irregular at the tth step of Ξ, and that x.rglr “ true
and Level pxq “ L at that step. Pick such a triple px, t, Lq such that L is maximum over all
members of S. Without loss of generality, x executes an action at step t.

By Lemma 8, x is irregular at step t´1. If Class pxq “ V at step t´1, then x.rglr “ false
at step t, contradiction. Otherwise, there is some y P Chldrn t´1

pxq such that y is irregular at
step t´1. Let L1 “ Level pyq at step t´1. If y.rglr “ false at step t´1, then x.rglr “ false
at step t, contradiction. Thus y.rglr “ true at step t ´ 1, hence py, t ´ 1, L1q P S, and
L1 ą L, which contradicts the maximality of L. J

I Lemma 10. During Ξ, no irregular process changes level.

Proof. By contradiction. Suppose x is irregular and changes its level during Ξ. Since Ξ is a
cycle, x.level must both increase and decrease during Ξ. By Lemma 9, x.rglr “ false during
Ξ, and thus by the definitions of the actions x.level can only decrease, contradiction. J

I Lemma 11. During Ξ, no regular process changes level.

Proof. We first observe that no process of Class III can change to any other Class. Suppose
x is a regular process. If Class pxq “ I, it cannot change its level. If Class pxq “ II, then
x cannot change its level, because its Class would change to III, and that step would be
irreversible. Thus Class pxq “ III.

The statement of the lemma is proven by induction on level. If Level pxq “ 0, then
Class pxq ‰ III. If Level pxq ą 0, let y “ parent pxq. By either Lemma 10 or the inductive
hypothesis, depending on whether y is irregular or regular, y does not change level during Ξ.
Thus, x can change level at most once during Ξ, and that change is irreversible. Since Ξ is a
cycle, x does not change level at all. J
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I Lemma 12. The computation of Match is acyclic.

Proof. Suppose Ξ is a cycle of computation of Match. By Lemmas 8, 10, and 11, no process
executes Line 2 nor any level action during Ξ. Given that regularity and levels are fixed, a
process can execute neither Line 15 nor Line 17 infinitely often, and thus Ξ cannot exist.
Hence Match is acyclic. J

I Theorem 13. Match is correct.

Proof. Correctness follows immediately from Lemmas 1 and 12. J

6 Round Complexity

Monus Notation. The operator monus, written “´ ” on non-negative integers is a variant
of subtraction, but never yields a negative. Formally, x´ y “ max tx´ y, 0u. For example,
5 ´ 3 “ 2, while 3 ´ 5 “ 0. Monus is left-associative and has the same precedence as addition
and subtraction. Note that i´ j´ k “ i´ pj ` kq.

We define a sequence of potentials. Let SR be the set of strongly regular processes.

1. πpxq “

"

´1 if pClass pxq “ IIIq ^ px P SRq ^ px.level “ 2` parent pxq.levelq
1 otherwise

2. θpxq “ max t0, πpxq `max tθpyq : y P Chldrn pxquu

3. µpxq “

"

0 if Chldrn pxq “ H
max tθpyq : y P Chldrn pxqu otherwise

4. dpxq “ the distance through G from x to r where r is the root that will eventually be
computed by Match. If two roots are computed, take r to be the one closer to x.

5. ψpxq “ dpxq ` 2Level pxq
6. Ψ “ max tψpxq : x P K Y Iu where I “ tx :  x.rglru.

7. αpxq “

$

’

’

’

’

&

’

’

’

’

%

1 if pClass pxq “ Iq ^ px P Iq
1 if pClass pxq “ IIq ^ px P I _ peerpxq R Iq
2 if pClass pxq “ Vq ^ px R Iq
1 if pClass pxq “ Vq ^ px P Iq ^ pPeers pxq Y Prnts pxq Ę Iq

0 otherwise
8. φpxq “ 4ψpxq ` µpxq ` αpxq.
9. Φ “ max tφpxq : x P K Y Iu.

The Potential Φ Decreases. In a sequence of lemmas, we prove that Φ decreases. Hence-
forth, let X “ tx P K Y I : φpxq “ Φu.
I Remark 14. (a) For any x P K Y I, φpxq does not increase. (b) Φ does not increase.

I Lemma 15. If x P X and µpxq “ 0, then either φpxq decreases or x R K Y I during the
next round.

Proof. All descendants of x are strongly regular, since otherwise φpxq would not be maximal.
Case 1. Class pxq “ I. If x P I, then x is enabled to execute Line 2, and will do so within
one round, decreasing αpxq, hence decreasing φpxq. If x is the sole process at level 0, then
x “ r, hence Φ “ 0, contradiction. Otherwise, there is a path σ from x to some process at
level 0. This path must contain a process y of Class V whose level is greater than that of x,
implying that φpyq ą φpxq, contradiction.
Case 2. Class pxq “ II. If αpxq “ 0, then x will execute Line 5 within one round, becoming
completely regular, and hence leaving X. If αpxq “ 1, either x will execute Line 2 or peerpxq
will execute Line 2, or both. After that execution αpxq “ 0.
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Case 3. Class pxq “ III. Then x P I, and x will execute Line 2 within one round, after
which x R K Y I.
Case 4. Class pxq “ IV. There must be some y P Peers pxq such that dpyq ą dpxq. Thus
φpyq ą φpxq, contradiction.
Case 5. Class pxq “ V. If αpxq “ 2, then x will execute Line line: regular within one
round, after which αpxq ď 1. If αpxq “ 1, then every member of Peers pxq Y Prnts pxq will
execute Line 2, after which αpxq “ 0. If αpxq “ 0, x will execute Line 11 within one round,
decreasing the value of φpxq. J

Level Actions of Class III Processes. If x is a Class III process, we say that x has type 0
if x.level “ 2` parent pxq.level. Otherwise, we say that x has type 1.
I Remark 16. If x is regular, then x is enabled to execute a level action if and only if x has
type 1 and all children of x have type 0.

I Lemma 17. No two neighboring Class III processes are simultaneously enabled to execute
a level action.

Proof. If two Class III processes are neighbors, one must be the parent of the other. The
result then follows immediately from Remark 16. J

I Lemma 18. If x is a strongly regular process which is enabled to execute a level action,
then x will execute that action within the next round.

Proof. All we need to show is that x cannot be neutralized before it acts. Since x has type
1, parent pxq cannot change its level, and since all children of x have type 0, they also cannot
change level. J

Chains not Trees. We analyze the evolution of the function θ only for the case that every
subtree of regular processes is a chain. Our logic is that the evolution of θpxq is determined
by the worst case behavior of any chain of Tx. (Henceforth, when we say “chain" of processes
we shall always mean a chain that ends at a leaf.)

Bit String Representation of Chains. We replace a chain σ of regular processes by a bit
string wpσq, obtained by replacing each process by its type. We index the symbols of a string
starting from the right; for example, if w “ 01, then w1 “ 1 and w2 “ 0. The ith suffix of w,
Sipwq, is defined to be the suffix of w starting at wi, i.e., Sipwq “ wiwi´1 ¨ ¨ ¨w1. We define θ
recursively for both a string, and a symbol within a string, as follows.
1. θpεq “ 0, where ε is the empty string.
2. θp0wq “ θpwq´ 1
3. θp1wq “ θpwq ` 1.
4. θpw, iq “ θpSipwqq.

I Lemma 19 (Monotonicity of θ). Let w be a bit string.
(a) If any 1 in w is replaced by 0, θpwq does not increase.
(b) If any collection of substrings 10 in w are each replaced by 01, θpwq does not increase.

Proof. Let w and w1 be strings such that θpwq ě θpw1q. Then
I Claim 20. θp0wq ě θp0w1q.
I Claim 21. θp1wq ě θp1w1q.
I Claim 22. θp1wq ą θp0wq.
I Claim 23. θp10wq ě θp01w1q.
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Claims 20, 21, and 22 follow trivially from the definition of θ. By Claims 20 and 21, we have
θp10wq “ θpwq´ 1` 1 ě θpwq “ θp01wq ě θp01w1q, proving IV. We have (a) by recursion on
|w|, using Claims 20, 21, and 22, and (b) by recursion on |w|, using 20, 21, and 23. J

I Lemma 24. If w is a bit string, θpwq ą 0, and w1 is obtained from w by replacing each
substring 10 by 01, and w11 Ð 0, then θpw1q ă θpwq.

Proof. The proof is by induction. The inductive step consists of a number of cases, each
characterized by the values of wi, wi´1, and w1i´1. There are special cases for i “ 1. We leave
the details of this proof for the full paper. J

I Lemma 25. If Φ ą 0, then Φ decreases during the next round.

If it were not for the requirement that a process x can only change its level if Children_Ok pxq
is true, we would be able to prove that Φ decreases every round. What is true is that, at
every configuration where I ‰ H, every process whose value of φ is maximum is enabled,
provided that the (annoying) condition Children_Ok holds.

The term µpxq provides the needed correction. It measures the number of rounds needed
before Children_Ok pxq becomes true. The coefficient of 4 is needed because of the time
needed to ensure µ is again zero on some process of maximum φ.

Proof. Let Φ ą 0. Let X “ tx P K Y I : φpxq “ Φu.
Let x P X. We need to show that φpxq decreases within one round. If µpxq “ 0, then
4ψpxq ` αpxq decreases, by Lemma 15.

I Claim 26. If µpxq “ 0 and x executes a level action, then within one round, µpxq does not
increase by more than 2.

Sketch of Proof of Claim 26. If x is enabled to execute a level action, and σ is a maximal
chain of regular processes ending with a child of x, then θpσq “ 0, which implies that the top
member of σ, a child of x, is of type 0, meaning that the bit string w “ wpσq starts with
0. When x executes the level action, that 0 is replaced by either 1 or 11, depending on the
action. In the worst case, θpwq is increased by 3, by Lemmas 19 and 24. J

We omit the remaining details of the proof of the lemma. J

The Strongly Regular Case. We now consider the case that all processes are strongly
regular.

I Lemma 27. If all processes are strongly regular, then within Opdiamq rounds, all processes
are of type 0.

Proof. We use Lemma 24 and monotonicity of θ, namely Lemma 19. Again simplifying
to the case of a chain of length h, the worst case of a strongly regular chain is where each
process is of type 1, and a chain is represented by the bit string 111 . . . 111 of length h, where
h ď diam. Within h rounds the bit string will consist of alternating zeros and ones, and
within another h rounds, it will be all zeros. By monotonicity, any other string will become
all zeros in the same number of rounds, or fewer. J

I Theorem 28. The round complexity of Match is Opdiamq.
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Proof Sketch: Each of the terms that makes up the potential Φ is Opdiamq, and thus by
Lemma 25, Φ decreases until I “ H and K consists only of the one process of Class I or the
two processes of Class II, within Opdiamq rounds.

The configuration now satisfies the conditions of the strongly regular case, and within
Opdiamq additional rounds, every process is at its final level.

Within Opdiamq additional rounds, the flag values converge and processes are matched.
The total round complexity of Match is thus Opdiamq. J

7 Step Complexity

In this section, we sketch the proof that Match has step complexity Opn diamq. We
can assume, without loss of generality, that only one process executes at any given step.
Henceforth in this section, we assume that each step consists of the execution of one process.

“Star” Notation. We use a star superscript on a variable or function to indicate the value
of that variable or function at the end of the current computation. For example, we write
parent ˚pxq for the value of parent pxq at the final configuration of the computation, and T˚x
for the subtree rooted at x in the final configuration.

We say that a configuration of Match is aligned if parent pxq “ y implies parent ˚pxq “ y;
otherwise we say the configuration is chaotic.

We will give the complete proof of the step complexity of Match in the full paper. In
this extended abstract, we outline the proof in the aligned case. By Lemma 29, alignment is
a closed property.

I Lemma 29. . Alignment is a closed property.

Proof. We only sketch the proof. The configuration is chaotic if and only if there is an
inverted pair , which we define to be neighboring processes x, y such that parent pxq “ y and
parent ˚pyq “ x. The only action that can create an inverted pair is Line 11, but careful
inspection of this action shows that it can only create an inverted pair if there is already an
inverted pair. Thus, an aligned configuration can never become chaotic. J

7.1 Regularity Actions
In this subsection, we prove that the total number of executions of Line 2 during a computation
of Match which starts at an aligned configuration is Opn diamq.

Let Chldrn ˚pxq “ ty P Npxq : parent ˚pyq “ xu, the eventual children of x.

I Lemma 30. During a computation of Match starting from an aligned configuration, the
total number of executions of Line 2 is Opn diamq.

Proof. We first introduce some potentials.
1. %pxq ” px.rglr ‰ Rglr pxqq, Boolean, meaning that x is enabled to execute Line 2. We

write 0 or 1 for the values of %.

2. τpxq “

"

1 if x.rglr ^ pClass pxq “ IIq
0

3. ωpxq “ %pxq `
ř

ωpyq : y P Chldrn ˚pxq
4. Ω “

ř

tωpxq ` τpxq : x P Gu

I Claim 31. ωpxq ď |T˚x |.
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Proof of Claim 31. By induction on heightpT˚x q. If heightpT˚x q “ 0, meaning x is a leaf of
the final tree, then ωpxq “ %pxq ď 1. Suppose heightpT˚x q ą 0. By the inductive hypothesis,
ωpxq “ %pxq `

ř
 

ωpyq : y P Chldrn ˚pxq
(

ď 1`
ř
 
ˇ

ˇT˚y
ˇ

ˇ : y P Chldrn ˚pxq
(

“ |T˚x |. J

Recall that dpxq is the distance, through G, from x to the nearest root r. Clearly,
dpxq ď diam. For any d, Let Ωd “

ř

tωpxq : dpxq “ du.
I Claim 32. Ωd ď n for all d.

Proof of Claim 32. T˚x and T˚y are disjoint if dpxq “ dpyq. Thus Ωd “
ř

t|Tx| : dpxq “ du ď

n. J

I Claim 33. Ω “ Opn diamq.

Proof of Claim 33. By Claim 32 Ω “
řdiam

d“0 Ωd `
ř

tτpxq : x P Gu ď n pdiam ` 2q J

I Claim 34. Ω does not increase, and Ω decreases at each step where some process executes
Line 2.

Proof of Claim 34. Consider the execution of one action by a process x. The only actions
that have an effect on the potentials %, τ , ω, and Ω are those listed in the table below. In
each case that x executes Line 2, Ω decreases, while in the one other case listed, an action of
Line 5, the value of Ω does not increase. The table below summarizes the effect of each of
those actions on the potentials, where ∆ indicates the increase of a quantity at the step.

∆%pxq ∆ωpxq ∆%pyq ∆ωpyq ∆τpxq ∆Ω

Class pxq “ I; x executes Line 2. ´1 ´1 0 ´1

Class pxq “ II; x executes Line 2;
y “ peerpxq. ´1 ´1 0 ´1 1 ´1

Class pxq “ II; x executes Line 5;
y “ peerpxq. 0 0 ď 1 ď 1 ´1 ď 0

Class pxq “ III; x executes Line 2;
y “ parent pxq. ´1 ´1 ď 1 ď 0 0 ď ´1

The other actions have no effect on any of the potentials listed above. J

The lemma follows from Claims 33 and 34. J

I Lemma 35. During a computation of Match starting from an aligned configuration, the
number of steps at which some process executes Line 15 is Opn diamq.

We skip the proof of Lemma 35, which is almost identical to the proof of Lemma30. We
can show that the step complexity of a computation starting from an aligned computation
consists of Opn diamq steps, using Lemmas 30 and 35, as well as additional lemmas which we
postpone to the full paper. In the full paper, we will prove the step complexity of Match.

8 Conclusion

We have given a self-stabilizing algorithm, under the unfair distributed daemon, for finding a
maximum matching of the processes of an anonymous network with a tree topology. Our
algorithm runs in Opdiamq rounds and Opn diamq steps, and needs only Op1q working space
per process, that is, space required for intermediate computations.
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