457 research outputs found

    Immediate Effects of Cervical Spine Thrust Joint Manipulation on Gait Parameters in Individuals with Neck Pain

    Full text link
    Purpose/Hypotheses: 1. To investigate for any change in gait parameters in individuals with neck pain while walking with different functional neck conditions immediately following cervical thrust joint manipulation (TJM) versus a sham intervention. 2. To investigate any association between Global Rating of Change (GROC) scores and gait parameters immediately following cervical thrust joint manipulation versus a sham intervention. The hypotheses were that, a) cervical TJM would have an immediate effect on gait parameters during walking with the neck in at least one of three conditions (neutral, flexion/extension and rotation) among individuals with neck pain; and b) higher scores on the GROC would be associated with improved gait parameters post-intervention. Subjects: Convenience sample of 40 individuals (30 female; mean age 24.5 ± 6.78 years) with neck pain. To qualify, subjects had to have a score \u3e0 on the question of pain intensity in the neck on the Neck Disability Index (NDI) questionnaire and have no contraindications or precautions for cervical TJM. Materials/Methods: Subjects walked on a Zeno Walkway under the following conditions: 1) head in neutral; 2) head rotating from side-to-side, and 3) head nodding up and down. After completing 30 practice trials (10 in each condition), pre-intervention trial 1 gait parameters were recorded for each of the three neck conditions in a randomized order. After a 5-minute rest period, pre-intervention trial 2 was conducted for each condition in same order as trial 1. Subjects then received one of two randomly assigned interventions: cervical spine TJM or active cervical rotation. Immediately after the intervention, the subject returned to the Zeno Walkway for the post-intervention trial 3 in each of the three conditions, in the same order as their previous trials. Gait parameters of average step length, stride length, stride width, velocity, and cadence were analyzed using a 2x2 repeated measures ANOVA (of trials 2 and 3), as well as independent and paired t-tests, to determine if there were any significant changes based on intervention when comparing TJM to sham groups. Results: The results of the 2x2 ANOVA revealed significant interactions between group and time on average gait velocity (p=0.008), step length (p=\u3c0.001), and stride length (p=0.009) when the head was in a neutral position. The TJM group experienced significant increases from pre to post-intervention as shown by paired samples t-test for average gait velocity (p=0.003), step length (p\u3c0.001), and stride length (p=0.008). The sham group however, experienced no significant change in gait velocity (p = 0.290), average step length (p = 0.299), and stride length (p = 0.292). There was also a significant decrease in the Numeric Pain Rating Scale (NPRS) (mean decrease of 1.25; p=0.003) and the group that received cervical TJM reported an improved perception of change demonstrated by an average increase in GROC score by 2.85 (p=0.001). Conclusions: Although our results demonstrate a statistically significant improvement in three gait parameters following TJM while walking with the neck in a neutral position, the improvements are not clinically significant. At this time, there is no evidence-based indication for the clinical use of cervical TJM to improve gait parameters in individuals with neck pain. Our findings cannot confirm clinical significance for reduction of neck pain with cervical TJM based on NDI, NPRS, or GROC questionnaires

    Human PrimPol is a highly error-prone polymerase regulated by single-stranded DNA binding proteins

    Get PDF
    PrimPol is a recently identified polymerase involved in eukaryotic DNA damage tolerance, employed in both re-priming and translesion synthesis mechanisms to bypass nuclear and mitochondrial DNA lesions. In this report, we investigate how the enzymatic activities of human PrimPol are regulated. We show that, unlike other TLS polymerases, PrimPol is not stimulated by PCNA and does not interact with it in vivo. We identify that PrimPol interacts with both of the major single-strand binding proteins, RPA and mtSSB in vivo. Using NMR spectroscopy, we characterize the domains responsible for the PrimPol-RPA interaction, revealing that PrimPol binds directly to the N-terminal domain of RPA70. In contrast to the established role of SSBs in stimulating replicative polymerases, we find that SSBs significantly limit the primase and polymerase activities of PrimPol. To identify the requirement for this regulation, we employed two forward mutation assays to characterize PrimPol's replication fidelity. We find that PrimPol is a mutagenic polymerase, with a unique error specificity that is highly biased towards insertion-deletion errors. Given the error-prone disposition of PrimPol, we propose a mechanism whereby SSBs greatly restrict the contribution of this enzyme to DNA replication at stalled forks, thus reducing the mutagenic potential of PrimPol during genome replication

    Synapse Clusters Are Preferentially Formed by Synapses with Large Recycling Pool Sizes

    Get PDF
    Synapses are distributed heterogeneously in neural networks. The relationship between the spatial arrangement of synapses and an individual synapse's structural and functional features remains to be elucidated. Here, we examined the influence of the number of adjacent synapses on individual synaptic recycling pool sizes. When measuring the discharge of the styryl dye FM1–43 from electrically stimulated synapses in rat hippocampal tissue cultures, a strong positive correlation between the number of neighbouring synapses and recycling vesicle pool sizes was observed. Accordingly, vesicle-rich synapses were found to preferentially reside next to neighbours with large recycling pool sizes. Although these synapses with large recycling pool sizes were rare, they were densely arranged and thus exhibited a high amount of release per volume. To consolidate these findings, functional terminals were marked by live-cell antibody staining with anti-synaptotagmin-1-cypHer or overexpression of synaptopHluorin. Analysis of synapse distributions in these systems confirmed the results obtained with FM 1–43. Our findings support the idea that clustering of synapses with large recycling pool sizes is a distinct developmental feature of newly formed neural networks and may contribute to functional plasticity

    C-Jun N-terminal kinase (JNK) isoforms play differing roles in otitis media

    Get PDF
    BACKGROUND: Innate immunity and tissue proliferation play important roles in otitis media (OM), the most common disease of childhood. CJUN terminal kinase (JNK) is potentially involved in both processes. RESULTS: Genes involved in both innate immune and growth factor activation of JNK are upregulated during OM, while expression of both positive and negative JNK regulatory genes is altered. When compared to wildtypes (WTs), C57BL/6 mice deficient in JNK1 exhibit enhanced mucosal thickening, with delayed recovery, enhanced neutrophil recruitment early in OM, and delayed bacterial clearance. In contrast, JNK2(−/−) mice exhibit delayed mucosal hyperplasia that eventually exceeds that of WTs and is slow to recover, delayed recruitment of neutrophils, and failure of bacterial clearance. CONCLUSIONS: The results suggest that JNK1 and JNK2 play primarily opposing roles in mucosal hyperplasia and neutrophil recruitment early in OM. However, both isoforms are required for the normal resolution of middle ear infection. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12865-014-0046-z) contains supplementary material, which is available to authorized users

    Constitutive Overexpression of the OsNAS Gene Family Reveals Single-Gene Strategies for Effective Iron- and Zinc-Biofortification of Rice Endosperm

    Get PDF
    BACKGROUND: Rice is the primary source of food for billions of people in developing countries, yet the commonly consumed polished grain contains insufficient levels of the key micronutrients iron (Fe), zinc (Zn) and Vitamin A to meet daily dietary requirements. Experts estimate that a rice-based diet should contain 14.5 µg g−1 Fe in endosperm, the main constituent of polished grain, but breeding programs have failed to achieve even half of that value. Transgenic efforts to increase the Fe concentration of rice endosperm include expression of ferritin genes, nicotianamine synthase genes (NAS) or ferritin in conjunction with NAS genes, with results ranging from two-fold increases via single-gene approaches to six-fold increases via multi-gene approaches, yet no approach has reported 14.5 µg g−1 Fe in endosperm. METHODOLOGY/PRINCIPAL FINDINGS: Three populations of rice were generated to constitutively overexpress OsNAS1, OsNAS2 or OsNAS3, respectively. Nicotianamine, Fe and Zn concentrations were significantly increased in unpolished grain of all three of the overexpression populations, relative to controls, with the highest concentrations in the OsNAS2 and OsNAS3 overexpression populations. Selected lines from each population had at least 10 µg g−1 Fe in polished grain and two OsNAS2 overexpression lines had 14 and 19 µg g−1 Fe in polished grain, representing up to four-fold increases in Fe concentration. Two-fold increases of Zn concentration were also observed in the OsNAS2 population. Synchrotron X-ray fluorescence spectroscopy demonstrated that OsNAS2 overexpression leads to significant enrichment of Fe and Zn in phosphorus-free regions of rice endosperm. CONCLUSIONS: The OsNAS genes, particularly OsNAS2, show enormous potential for Fe and Zn biofortification of rice endosperm. The results demonstrate that rice cultivars overexpressing single rice OsNAS genes could provide a sustainable and genetically simple solution to Fe and Zn deficiency disorders affecting billions of people throughout the world.Alexander A. T. Johnson, Bianca Kyriacou, Damien L. Callahan, Lorraine Carruthers, James Stangoulis, Enzo Lombi and Mark Teste

    A Requirement of TolC and MDR Efflux Pumps for Acid Adaptation and GadAB Induction in Escherichia coli

    Get PDF
    BACKGROUND: The TolC outer membrane channel is a key component of several multidrug resistance (MDR) efflux pumps driven by H(+) transport in Escherichia coli. While tolC expression is under the regulation of the EvgA-Gad acid resistance regulon, the role of TolC in growth at low pH and extreme-acid survival is unknown. METHODS AND PRINCIPAL FINDINGS: TolC was required for extreme-acid survival (pH 2) of strain W3110 grown aerobically to stationary phase. A tolC deletion decreased extreme-acid survival (acid resistance) of aerated pH 7.0-grown cells by 10(5)-fold and of pH 5.5-grown cells by 10-fold. The requirement was specific for acid resistance since a tolC defect had no effect on aerobic survival in extreme base (pH 10). TolC was required for expression of glutamate decarboxylase (GadA, GadB), a key component of glutamate-dependent acid resistance (Gad). TolC was also required for maximal exponential growth of E. coli K-12 W3110, in LBK medium buffered at pH 4.5-6.0, but not at pH 6.5-8.5. The TolC growth requirement in moderate acid was independent of Gad. TolC-associated pump components EmrB and MdtB contributed to survival in extreme acid (pH 2), but were not required for growth at pH 5. A mutant lacking the known TolC-associated efflux pumps (acrB, acrD, emrB, emrY, macB, mdtC, mdtF, acrEF) showed no growth defect at acidic pH and a relatively small decrease in extreme-acid survival when pre-grown at pH 5.5. CONCLUSIONS: TolC and proton-driven MDR efflux pump components EmrB and MdtB contribute to E. coli survival in extreme acid and TolC is required for maximal growth rates below pH 6.5. The TolC enhancement of extreme-acid survival includes Gad induction, but TolC-dependent growth rates below pH 6.5 do not involve Gad. That MDR resistance can enhance growth and survival in acid is an important consideration for enteric organisms passing through the acidic stomach

    The Orphan Receptor CRF2-4 Is an Essential Subunit of the Interleukin 10 Receptor

    Get PDF
    The orphan receptor CRF2-4 is a member of the class II cytokine receptor family (CRF2), which includes the interferon receptors, the interleukin (IL) 10 receptor, and tissue factor. CRFB4, the gene encoding CRF2-4, is located within a gene cluster on human chromosome 21 that comprises three interferon receptor subunits. To elucidate the role of CRF2-4, we disrupted the CRFB4 gene in mice by means of homologous recombination. Mice lacking CRF2-4 show no overt abnormalities, grow normally, and are fertile. CRF2-4 deficient cells are normally responsive to type I and type II interferons, but lack responsiveness to IL-10. By ∼12 wk of age, the majority of mutant mice raised in a conventional facility developed a chronic colitis and splenomegaly. Thus, CRFB4 mutant mice recapitulate the phenotype of IL-10–deficient mice. These findings suggest that CRF2-4 is essential for IL-10–mediated effects and is a subunit of the IL-10 receptor

    TOI-2015b: A Warm Neptune with Transit Timing Variations Orbiting an Active mid M Dwarf

    Full text link
    We report the discovery of a close-in (Porb=3.349daysP_{\mathrm{orb}} = 3.349\:\mathrm{days}) warm Neptune with clear transit timing variations (TTVs) orbiting the nearby (d=47.3pcd=47.3\:\mathrm{pc}) active M4 star, TOI-2015. We characterize the planet's properties using TESS photometry, precise near-infrared radial velocities (RV) with the Habitable-zone Planet Finder (HP) Spectrograph, ground-based photometry, and high-contrast imaging. A joint photometry and RV fit yields a radius Rp = 3.370.20+0.15RR_p~=~3.37_{-0.20}^{+0.15} \:\mathrm{R_\oplus}, mass mp = 16.44.1+4.1Mm_p~=~16.4_{-4.1}^{+4.1}\:\mathrm{M_\oplus}, and density ρp = 2.320.37+0.38gcm3\rho_p~=~2.32_{-0.37}^{+0.38} \:\mathrm{g cm^{-3}} for TOI-2015b, suggesting a likely volatile-rich planet. The young, active host star has a rotation period of Prot = 8.7± 0.9 daysP_{\mathrm{rot}}~=~8.7 \pm~0.9~\mathrm{days} and associated rotation-based age estimate of 1.1 ± 0.1Gyr1.1~\pm~0.1\:\mathrm{Gyr}. Though no other transiting planets are seen in the TESS data, the system shows clear TTVs of super period Psup  430daysP_{\mathrm{sup}}~\approx~430\:\mathrm{days} and amplitude \sim100minutes100\:\mathrm{minutes}. After considering multiple likely period ratio models, we show an outer planet candidate near a 2:1 resonance can explain the observed TTVs while offering a dynamically stable solution. However, other possible two-planet solutions -- including 3:2 and 4:3 resonance -- cannot be conclusively excluded without further observations. Assuming a 2:1 resonance in the joint TTV-RV modeling suggests a mass of mb = 13.34.5+4.7Mm_b~=~13.3_{-4.5}^{+4.7}\:\mathrm{M_\oplus} for TOI-2015b and mc = 6.82.3+3.5Mm_c~=~6.8_{-2.3}^{+3.5}\:\mathrm{M_\oplus} for the outer candidate. Additional transit and RV observations will be beneficial to explicitly identify the resonance and further characterize the properties of the system.Comment: 28 pages, 15 figures, 6 tables. As submitted to AAS Journal
    corecore