47 research outputs found

    Dynamics of mtDNA introgression during species range expansion. Insights from an experimental longitudinal study

    Get PDF
    Introgressive hybridization represents one of the long-lasting debated genetic consequences of species range expansion. Mitochondrial DNA has been shown to heavily introgress between interbreeding animal species that meet in new sympatric areas and, often, asymmetric introgression from local to the colonizing populations has been observed. Disentangling among the evolutionary and ecological processes that might shape this pattern remains difficult, because they continuously act across time and space. In this context, long-term studies can be of paramount importance. Here, we investigated the dynamics of mitochondrial introgression between two mosquito species (Aedes mariae and Ae. zammitii ) during a colonization event that started in 1986 after a translocation experiment. By analyzing 1,659 individuals across 25 years, we showed that introgression occurred earlier and at a higher frequency in the introduced than in the local species, showing a pattern of asymmetric introgression. Throughout time, introgression increased slowly in the local species, becoming reciprocal at most sites. The rare opportunity to investigate the pattern of introgression across time during a range expansion along with the characteristics of our study-system allowed us to support a role of demographic dynamics in determining the observed introgression pattern

    Cannibalism in temporary waters. Simulations and laboratory experiments revealed the role of spatial shape in the mosquito Aedes albopictus

    Get PDF
    Cannibalism is a commonly observed phenomenon in arthropod species having relevant consequences for population dynamics and individual fitness. It is a context-dependent behaviour and an understanding of the factors affecting cannibalism rate is crucial to highlight its ecological relevance. In mosquitoes, cannibalism between larval stages has been widely documented, and the role of density, food availability and length of contact between individuals also ascertained. However, although mosquitoes can develop in temporary water habitats with very heterogeneous topologies, the role of the site shape where cannibals and victims co-occur has been instead overlooked. In this paper, we investigated this issue by using a simulation approach and laboratory cannibalism experiments between old (third- and fourth-instars) and young (first-instar) larvae of the tiger mosquito Aedes albopictus. Three virtual spaces with different shapes were simulated and the number of larval encounters was estimated in each one to assess whether the spatial shape affected the number of encounters between cannibal and victims. Then, experimental trials in containers with similar shapes to those used in the simulations were performed, and the cannibalism rate was estimated at 24 and 48h. Our results showed that the spatial shape plays a role on cannibalism interactions, affecting the number of encounters between individuals. Indeed, in the experimental trials performed, we observed the highest cannibalism rate in the container with the highest number of encounters predicted by the simulations. Interestingly, we found also that spatial shape can affect cannibalism not only by affecting the number of encounters, but also the number of encounters ÂŞfavorableÂş for cannibalistic events. Temporary waters are inhabited by several species other than mosquitoes. Our results, showing an influence of the spatial shape on cannibalism in Ae. albopictus larvae, add a new critical factor to those affecting ecological interactions in these habitats

    Exon-intron structure and sequence variation of the calreticulin gene among Rhipicephalus sanguineus group ticks

    Get PDF
    Background: Calreticulin proteins (CRTs) are important components of tick saliva, which is involved in the blood meal success, pathogen transmission and host allergic responses. The characterization of the genes encoding for salivary proteins, such as CRTs, is pivotal to understand the mechanisms of tick-host interaction during blood meal and to develop tick control strategies based on their inhibition. In hard ticks, crt genes were shown to have only one intron with conserved position among species. In this study we investigated the exon-intron structure and variation of the crt gene in Rhipicephalus spp. ticks in order to assess the crt exon-intron structure and the potential utility of crt gene as a molecular marker. Methods: We sequenced the exon-intron region of crt gene in ticks belonging to so-called tropical and temperate lineages of Rhipicephalus sanguineus (sensu lato), Rhipicephalus sp. I, Rhipicephalus sp. III, Rhipicephalus sp. IV, R. guilhoni, R. muhsamae and R. turanicus. Genetic divergence and phylogenetic relationships between the sequences obtained were estimated. Results: All individuals belonging to the tropical lineage of R. sanguineus (s. l.), R. guilhoni, R. muhsamae, R. turanicus, Rhipicephalus sp. III and Rhipicephalus sp. IV analysed showed crt intron-present alleles. However, both crt intron-present and intron-absent alleles were found in Rhipicephalus sp. I and the temperate lineage of R. sanguineus (s. l.), showing the occurrence of an intraspecific intron presence-absence polymorphism. Phylogenetic relationships among the crt intron-present sequences showed distinct lineages for all taxa, with the tropical and temperate lineages of R. sanguineus (s. l.) being more closely related to each other. Conclusions: We expanded previous studies about the characterization of crt gene in hard ticks. Our results highlighted a previously overlooked variation in the crt structure among Rhipicephalus spp., and among hard ticks in general. Notably, the intron presence/absence polymorphism observed herein can be a candidate study-system to investigate the early stages of intron gain/loss before fixation at species level and some debated questions about intron evolution. Finally, the sequence variation observed supports the suitability of the crt gene for molecular recognition of Rhipicephalus spp. and for phylogenetic studies in association with other markers

    The choreography of the chemical defensome response to insecticide stress: insights into the Anopheles stephensi transcriptome using RNA-Seq

    Get PDF
    Animals respond to chemical stress with an array of gene families and pathways termed "chemical defensome". In arthropods, despite many defensome genes have been detected, how their activation is arranged during toxic exposure remains poorly understood. Here, we sequenced the transcriptome of Anopheles stephensi larvae exposed for six, 24 and 48 hours to the LD50 dose of the insecticide permethrin to monitor transcriptional changes of defensome genes across time. A total of 177 genes involved in insecticide defense were differentially expressed (DE) in at least one time-point, including genes encoding for Phase 0, I, II, III and antioxidant enzymes and for Heat Shock and Cuticular Proteins. Three major patterns emerged throughout time. First, most of DE genes were down-regulated at all time-points, suggesting a reallocation of energetic resources during insecticide stress. Second, single genes and clusters of genes turn off and on from six to 48 hours of treatment, showing a modulated response across time. Third, the number of up-regulated genes peaked at six hours and then decreased during exposure. Our results give a first picture of how defensome gene families respond against toxicants and provide a valuable resource for understanding how defensome genes work together during insecticide stress

    Temporal dynamics of the ABC transporter response to insecticide treatment: insights from the malaria vector Anopheles stephensi

    Get PDF
    In insects, ABC transporters have been shown to contribute to defence/resistance to insecticides by reducing toxic concentrations in cells/tissues. Despite the extensive studies about this detoxifying mechanism, the temporal patterns of ABC transporter activation have been poorly investigated. Using the malaria vector Anopheles stephensi as a study system, we investigated the expression profile of ABC genes belonging to different subfamilies in permethrin-treated larvae at different time points (30 min to 48 h). Our results showed that the expression of ABCB and ABCG subfamily genes was upregulated at 1 h after treatment, with the highest expression observed at 6 h. Therefore, future investigations on the temporal dynamics of ABCgene expression will allow a better implementation of insecticide treatment regimens, including the use of specific inhibitors of ABC efflux pumps

    Identification and Detection of a Novel Point Mutation in the Chitin Synthase Gene of Culex Pipiens Associated With Diflubenzuron Resistance

    Get PDF
    Diflubenzuron (DFB) is one of the most used insecticides in mosquito larval control including that of Culex pipiens, the proven vector of the recent West Nile Virus epidemics in Europe. Two mutations (I1043L and I1043M) in the chitin synthase (CHS) putative binding site of DFB have been previously reported in Cx. pipiens from Italy and associated with high levels of resistance against this larvicide

    Integrated de novo transcriptome of Culex pipiens mosquito larvae as a resource for genetic control strategies

    Get PDF
    We present a de novo transcriptome of the mosquito vector Culex pipiens, assembled by sequences of susceptible and insecticide resistant larvae. The high quality of the assembly was confirmed by TransRate and BUSCO. A mapping percentage until 94.8% was obtained by aligning contigs to Nr, SwissProt, and TrEMBL, with 27,281 sequences that simultaneously mapped on the three databases. A total of 14,966 ORFs were also functionally annotated by using the eggNOG database. Among them, we identified ORF sequences of the main gene families involved in insecticide resistance. Therefore, this resource stands as a valuable reference for further studies of differential gene expression as well as to identify genes of interest for genetic-based control tools

    Ancient hybridization and mtDNA introgression behind current paternal leakage and heteroplasmy in hybrid zones

    No full text
    Hybridization between heterospecific individuals has been documented as playing a direct role in promoting paternal leakage and mitochondrial heteroplasmy in both natural populations and laboratory conditions, by relaxing the egg-sperm recognition mechanisms. Here, we tested the hypothesis that hybridization can lead to mtDNA heteroplasmy also indirectly via mtDNA introgression. By using a phylogenetic approach, we showed in two reproductively isolated beetle species, Ochthebius quadricollis and O. urbanelliae, that past mtDNA introgression occurred between them in sympatric populations. Then, by developing a multiplex allele-specific PCR assay, we showed the presence of heteroplasmic individuals and argue that their origin was through paternal leakage following mating between mtDNA-introgressed and pure conspecific individuals. Our results highlight that mtDNA introgression can contribute to promote paternal leakage, generating genetic novelty in a way that has been overlooked to date. Furthermore, they highlight that the frequency and distribution of mtDNA heteroplasmy can be deeply underestimated in natural populations, as i) the commonly used PCR-Sanger sequencing approach can fail to detect mitochondrial heteroplasmy, and ii) specific studies aimed at searching for it in populations where mtDNA-introgressed and pure individuals co-occur remain scarce, despite the fact that mtDNA introgression has been widely documented in several taxa and populations

    Repetita iuvant, perseverare diabolicum: un approccio multidisciplinare alla ripetizione

    No full text
    La ripetizione è uno schema di funzionamento del mondo naturale e sociale, e svolge un ruolo fondamentale in tutti i processi di comunicazione. Per esempio, dal punto di vista cognitivo, la ripetizione di uno stimolo porta al consolidamento dei legami sinaptici e della memoria; a livello testuale, la ripetizione produce coesione e unità di senso (si pensi non solo a testi verbali, ma anche ad altri “testi”, per esempio un’opera musicale); o ancora, dal punto di vista culturale, ripetere abitudini o rituali è un ingrediente fondamentale dell’identità individuale e collettiva
    corecore