573 research outputs found

    Nebulized mesenchymal stem cell derived conditioned medium ameliorates Escherichia coli induced pneumonia in a rat model

    Get PDF
    BackgroundMesenchymal stem cells (MSC) have shown immense therapeutic promise in a range of inflammatory diseases, including acute respiratory distress syndrome (ARDS), and are rapidly advancing through clinical trials. Among their multimodal mechanisms of action, MSCs exert strong immunomodulatory effects via their secretome, which contains cytokines, small molecules, extracellular vesicles, and a range of other factors. Recent studies have shown that the MSC secretome can recapitulate many of the beneficial effects of the MSC itself. We aimed to determine the therapeutic capacity of the MSC secretome in a rat bacterial pneumonia model, especially when delivered directly to the lung by nebulization which is a technique more appropriate for the ventilated patient.MethodsConditioned medium (CM) was generated from human bone marrow derived MSCs in the absence of antibiotics and serum supplements. Post-nebulization lung penetration was estimated through nebulization of CM to a cascade impactor and simulated lung and quantification of collected total protein and IL-8 cytokine. Control and nebulized CM was added to a variety of lung cell culture models and injury resolution assessed. In a rat E. coli pneumonia model, CM was instilled or administered by nebulization and lung injury and inflammation assessed at 48 h.ResultsMSC-CM was predicted to have good distal lung penetration and delivery when administered by nebulizer. Both control and nebulized CM reduced NF-κB activation and inflammatory cytokine production in lung cell culture, while promoting cell viability and would closure in oxidative stress and scratch wound models. In a rat bacterial pneumonia model, both instilled and nebulizer delivered CM improved lung function, increasing blood oxygenation and reducing carbon dioxide levels compared to unconditioned medium controls. A reduction in bacterial load was also observed in both treatment groups. Inflammatory cytokines were reduced significantly by both liquid and aerosol CM administration, with less IL-1β, IL-6, and CINC1 in these groups compared to controls.ConclusionMSC-CM is a potential therapeutic for pneumonia ARDS, and administration is compatible with vibrating mesh nebulization

    A cross-sectional survey of awareness of human papillomavirus-associated oropharyngeal cancers among general practitioners in the UK

    Get PDF
    Objectives: To examine the level of awareness of the link between human papillomavirus (HPV) and oropharyngeal cancer (OPC) and epidemiological trends in HPV-related OPC among general practitioners (GPs) in the UK. Design: Cross-sectional survey. Participants: 384 GPs from England, Scotland, Wales and Northern Ireland. Setting: The survey was administered at GP training courses and via email to lists of training course attendees. Primary and secondary outcome measures: Proportion of respondents aware of the link between HPV and OPC; respondents’ self-rated knowledge of OPC; proportion of participants aware of the epidemiological trends in HPV-associated OPC. Results: 384 questionnaires were completed with an overall response rate of 72.9%. 74.0% of participants recognised HPV as a risk factor for OPC, which was lower than knowledge about the role of smoking, chewing tobacco and alcohol consumption (all >90%?recognition). Overall, 19.4% rated their knowledge of OPC as very good or good, 62.7% as average and 17.7% as poor or very poor. The majority (71.9%) were aware that rates of HPV-associated OPC have increased over the last two decades. Fewer than half (41.5%) of the participants correctly identified being male as a risk factor of HPV-associated OPC, while 58.8% were aware that patients with HPV-associated OPC tend to be younger than those with non-HPV-associated disease. Conclusions: The association of HPV infection with OPC is a relatively recent discovery. Although the level of awareness of HPV and OPC among GPs was high, the characteristics of HPV-associated OPC were less well recognised, indicating the need for further education

    Protocol for a definitive randomised controlled trial and economic evaluation of a community-based rehabilitation programme following hip fracture:fracture in the elderly multidisciplinary rehabilitation-phase III (FEMuR III)

    Get PDF
    Introduction: Proximal femoral (hip) fracture is common, serious and costly. Rehabilitation may improve functional recovery but evidence of effectiveness and cost-effectiveness are lacking. An enhanced rehabilitation intervention was previously developed and a feasibility study tested the methods used for this randomised controlled trial (RCT). The objectives are to compare the effectiveness and cost-effectiveness of the enhanced rehabilitation programme following surgical repair of proximal femoral fracture in older people compared with usual care.  Methods and analysis: Protocol for phase III, parallel-group, two-armed, superiority, pragmatic RCT with 1:1 allocation ratio; allocation sequence by minimisation programme with a built-in random element; secure web-based allocation concealment. The two treatments will be usual care (control) and usual care plus an enhanced rehabilitation programme (intervention). The enhanced rehabilitation will consist of a patient-held information workbook, goal setting diary and up to six additional therapy sessions. Outcome assessment and statistical analysis will be performed blind; patient and carer participants will be unblinded. Outcomes will be measured at baseline, 17 and 52 weeks' follow-up. Primary outcome at 52 weeks will be the Nottingham Extended Activities of Daily Living scale. Secondary outcomes will measure anxiety and depression, health utility, cognitive status, hip pain intensity, falls self-efficacy, fear of falling, grip strength and physical function. Carer strain, anxiety and depression will be measured in carers. All safety events will be recorded, and serious adverse events will be assessed to determine whether they are related to the intervention and expected. Concurrent economic evaluation will be a cost-utility analysis from a health service and personal social care perspective. An embedded process evaluation will determine the mechanisms and processes that explain the implementation and impacts of the enhanced rehabilitation programme.  Ethics and dissemination: National Health Service research ethics approval reference 18/NE/0300. Results will be disseminated by peer-reviewed publication.  Trial registration number ISRCTN28376407; Pre-results registered on 23 November 2018

    Longitudinal cohort study investigating neurodevelopmental and socioemotional outcomes in school-entry aged children after open heart surgery in Australia and New Zealand: the NITRIC follow-up study protocol

    Full text link
    Introduction: Despite growing awareness of neurodevelopmental impairments in children with congenital heart disease (CHD), there is a lack of large, longitudinal, population-based cohorts. Little is known about the contemporary neurodevelopmental profile and the emergence of specific impairments in children with CHD entering school. The performance of standardised screening tools to predict neurodevelopmental outcomes at school age in this high-risk population remains poorly understood. The NITric oxide during cardiopulmonary bypass to improve Recovery in Infants with Congenital heart defects (NITRIC) trial randomised 1371 children <2 years of age, investigating the effect of gaseous nitric oxide applied into the cardiopulmonary bypass oxygenator during heart surgery. The NITRIC follow-up study will follow this cohort annually until 5 years of age to assess outcomes related to cognition and socioemotional behaviour at school entry, identify risk factors for adverse outcomes and evaluate the performance of screening tools. Methods and analysis: Approximately 1150 children from the NITRIC trial across five sites in Australia and New Zealand will be eligible. Follow-up assessments will occur in two stages: (1) annual online screening of global neurodevelopment, socioemotional and executive functioning, health-related quality of life and parenting stress at ages 2–5 years; and (2) face-to-face assessment at age 5 years assessing intellectual ability, attention, memory and processing speed; fine motor skills; language and communication; and socioemotional outcomes. Cognitive and socioemotional outcomes and trajectories of neurodevelopment will be described and demographic, clinical, genetic and environmental predictors of these outcomes will be explored. Ethics and dissemination: Ethical approval has been obtained from the Children’s Health Queensland (HREC/20/QCHQ/70626) and New Zealand Health and Disability (21/NTA/83) Research Ethics Committees. The findings will inform the development of clinical decision tools and improve preventative and intervention strategies in children with CHD. Dissemination of the outcomes of the study is expected via publications in peer-reviewed journals, presentation at conferences, via social media, podcast presentations and medical education resources, and through CHD family partners.Trial registration numberThe trial was prospectively registered with the Australian New Zealand Clinical Trials Registry as ‘Gene Expression to Predict Long-Term Neurodevelopmental Outcome in Infants from the NITric oxide during cardiopulmonary bypass to improve Recovery in Infants with Congenital heart defects (NITRIC) Study – A Multicentre Prospective Trial’. Trial registration: ACTRN12621000904875

    A new multiplex SARS-CoV-2 antigen microarray showed correlation of IgG, IgA, and IgM antibodies from patients with COVID-19 disease severity and maintenance of relative IgA and IgM antigen binding over time

    Get PDF
    Zoonotic spillover of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to humans in December 2019 caused the coronavirus disease 2019 (COVID-19) pandemic. Serological monitoring is critical for detailed understanding of individual immune responses to infection and protection to guide clinical therapeutic and vaccine strategies. We developed a high throughput multiplexed SARS-CoV-2 antigen microarray incorporating spike (S) and nucleocapsid protein (NP) and fragments expressed in various hosts which allowed simultaneous assessment of serum IgG, IgA, and IgM responses. Antigen glycosylation influenced antibody binding, with S glycosylation generally increasing and NP glycosylation decreasing binding. Purified antibody isotypes demonstrated a binding pattern and intensity different from the same isotype in whole serum, probably due to competition from the other isotypes present. Using purified antibody isotypes from naïve Irish COVID-19 patients, we correlated antibody isotype binding to different panels of antigens with disease severity, with binding to the S region S1 expressed in insect cells (S1 Sf21) significant for IgG, IgA, and IgM. Assessing longitudinal response for constant concentrations of purified antibody isotypes for a patient subset demonstrated that the relative proportion of antigen-specific IgGs decreased over time for severe disease, but the relative proportion of antigen-specific IgA binding remained at the same magnitude at 5 and 9 months post-first symptom onset. Further, the relative proportion of IgM binding decreased for S antigens but remained the same for NP antigens. This may support antigen-specific serum IgA and IgM playing a role in maintaining longer-term protection, important for developing and assessing vaccine strategies. Overall, these data demonstrate the multiplexed platform as a sensitive and useful platform for expanded humoral immunity studies, allowing detailed elucidation of antibody isotypes response against multiple antigens. This approach will be useful for monoclonal antibody therapeutic studies and screening of donor polyclonal antibodies for patient infusions

    Improved diagnosis of SARS-CoV-2 by using nucleoprotein and spike protein fragment 2 in quantitative dual ELISA tests

    Get PDF
    The novel coronavirus, severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), is the causative agent of the 2020 worldwide coronavirus pandemic. Antibody testing is useful for diagnosing historic infections of a disease in a population. These tests are also a helpful epidemiological tool for predicting how the virus spreads in a community, relating antibody levels to immunity and for assessing herd immunity. In the present study, SARS-CoV-2 viral proteins were recombinantly produced and used to analyse serum from individuals previously exposed, or not, to SARS-CoV-2. The nucleocapsid (Npro) and spike subunit 2 (S2Frag) proteins were identified as highly immunogenic, although responses to the former were generally greater. These two proteins were used to develop two quantitative enzyme-linked immunosorbent assays (ELISAs) that when used in combination resulted in a highly reliable diagnostic test. Npro and S2Frag-ELISAs could detect at least 10% more true positive coronavirus disease-2019 (COVID-19) cases than the commercially available ARCHITECT test (Abbott). Moreover, our quantitative ELISAs also show that specific antibodies to SARS-CoV-2 proteins tend to wane rapidly even in patients who had developed severe disease. As antibody tests complement COVID-19 diagnosis and determine population-level surveillance during this pandemic, the alternative diagnostic we present in this study could play a role in controlling the spread of the virus

    Effective health care for older people living and dying in care homes: A realist review

    Get PDF
    Background: Care home residents in England have variable access to health care services. There is currently no coherent policy or consensus about the best arrangements to meet these needs. The purpose of this review was to explore the evidence for how different service delivery models for care home residents support and/or improve wellbeing and health-related outcomes in older people living and dying in care homes. Methods: We conceptualised models of health care provision to care homes as complex interventions. We used a realist review approach to develop a preliminary understanding of what supported good health care provision to care homes. We completed a scoping of the literature and interviewed National Health Service and Local Authority commissioners, providers of services to care homes, representatives from the Regulator, care home managers, residents and their families. We used these data to develop theoretical propositions to be tested in the literature to explain why an intervention may be effective in some situations and not others. We searched electronic databases and related grey literature. Finally the findings were reviewed with an external advisory group. Results: Strategies that support and sustain relational working between care home staff and visiting health care professionals explained the observed differences in how health care interventions were accepted and embedded into care home practice. Actions that encouraged visiting health care professionals and care home staff jointly to identify, plan and implement care home appropriate protocols for care, when supported by ongoing facilitation from visiting clinicians, were important. Contextual factors such as financial incentives or sanctions, agreed protocols, clinical expertise and structured approaches to assessment and care planning could support relational working to occur, but of themselves appeared insufficient to achieve change. Conclusion: How relational working is structured between health and care home staff is key to whether health service interventions achieve health related outcomes for residents and their respective organisations. The belief that either paying clinicians to do more in care homes and/or investing in training of care home staff is sufficient for better outcomes was not supported.This research was funded by National Institute of Health Research Health Service Delivery and Research programme (HSDR 11/021/02)

    Rockport Comprehensive Plan

    Get PDF
    This document was developed and prepared by Texas Target Communities (TxTC) at Texas A&M University in partnership with the City of Rockport, Texas Sea Grant, Texas A&M University - Corpus Christi, Texas A&M University - School of Law and Texas Tech University.Founded in 1871, the City of Rockport aims to continue growing economically and sustainably. Rockport is a resilient community dedicated to sustainable growth and attracting businesses to the area. Rockport is a charming town that offers a close-knit community feel and is a popular tourist destination for marine recreation, fairs, and exhibitions throughout the year. The Comprehensive Plan 2020-2040 is designed to guide the city of Rockport for its future growth. The guiding principles for this planning process were Rockport's vision statement and its corresponding goals, which were crafted by the task force. The goals focus on factors of growth and development including public participation, development considerations, transportation, community facilities, economic development, parks, and housing and social vulnerability

    Development of the Preferred Components for Co-Design in Research Guideline and Checklist: Protocol for a Scoping Review and a Modified Delphi Process

    Get PDF
    Background: There is increasing evidence that co-design can lead to more engaging, acceptable, relevant, feasible, and even effective interventions. However, no guidance is provided on the specific designs and associated methods or methodologies involved in the process. We propose the development of the Preferred Components for Co-design in Research (PRECISE) guideline to enhance the consistency, transparency, and quality of reporting co-design studies used to develop complex health interventions. Objective: The aim is to develop the first iteration of the PRECISE guideline. The purpose of the PRECISE guideline is to improve the consistency, transparency, and quality of reporting on studies that use co-design to develop complex health interventions. Methods: The aim will be achieved by addressing the following objectives: to review and synthesize the literature on the models, theories, and frameworks used in the co-design of complex health interventions to identify their common elements (components, values or principles, associated methods and methodologies, and outcomes); and by using the results of the scoping review, prioritize the co-design components, values or principles, associated methods and methodologies, and outcomes to be included in the PRECISE guideline. Results: The project has been funded by the Canadian Institutes of Health Research. Conclusions: The collective results of this project will lead to a ready-to-implement PRECISE guideline that outlines a minimum set of items to include when reporting the co-design of complex health interventions. The PRECISE guideline will improve the consistency, transparency, and quality of reports of studies. Additionally, it will include guidance on how to enact or enable the values or principles of co-design for meaningful and collaborative solutions (interventions). PRECISE might also be used by peer reviewers and editors to improve the review of manuscripts involving co-design. Ultimately, the PRECISE guideline will facilitate more efficient use of new results about complex health intervention development and bring better returns on research investments

    Understanding the Mechanisms of Action of Hypercapnic Acidosis and the Therapeutic Potential of Human Mesenchymal Stromal Cells in Diminishing Inflammation and Enhancing Repair in Acute Respiratory Distress Syndrome.

    No full text
    Acute respiratory distress syndrome (ARDS) is a term used to describe severe lung injury characterised by uncontrolled inflammatory response and resultant damage to endothelial and epithelial layers leading to eventual loss of pulmonary function. ARDS can be aggravated by the only therapy currently available to prolong survival - mechanical ventilation. To date many attempts have been made to alter ventilation protocols to reduce the over-distension and cycle of atelectasis and shear stresses associated with artificial gas delivery to the lung. Thus far the most effective therapeutic strategy overall has been to reduce the tidal volumes used which can lead to the build-up of CO2, this is termed "permissive hypercapnia". Experimental studies recommend avoiding buffering the resultant acidosis as there is no evidence of benefit. In fact, both the decrease in pH and the elevated CO2 may confer their own beneficial effects during lung inflammation and injury, but may also have adverse effects such as slowing repair and inhibiting the host response to infection. The anti-inflammatory effects of hypercapnic acidosis (HCA), appears to be mediated, at least in part, by the suppression of NF-kB, a key transcription factor in inflammation, injury and repair. however the exact mechanisms by which HCA suppresses activation of the NF-kB pathway remain to be elucidated. A greater understanding of these mechanisms may provide opportunities to develop strategies to harness the benefits of hypercapnia while minimising any potential for harm. The investigation of the therapeutic potential of mesenchymal stem/stromal cells (MSCs) is a rapidly escalating, including recent application to the area of lung disease and injury. The safety, and in some cases, efficacy of hMSCs has been established in disease states such as skeletal muscle injury, myocardial infarction, stroke, and graft versus host disease. In fact, an initial phase 1 dose escalation efficacy and safety study of MSCs has recently commenced in patients with ARDS. However, much remains to be understood in regard to the efficacy and mechanisms of action of MSCs before we can move forward to definitive clinical testing. Therefore these studies, in a continuation of previous studies from our laboratory are aimed at determining the precise mechanism of action of HCA on the pulmonary NF-kB pathway and following this, to provide critical pre-clinical data that will enable the safe and effective use of human MSCs in ARDS. Methods: In vitro models of lung injury were used to determine the effects of HCA on the NF-kB pathway. Pulmonary cell lines were transfected or transduced with an NF-kB luciferase reporter and subjected to TNF-a, IL-1b or endotoxin injury. Therapeutic HC was administered by increasing CO2 levels in cell culture environments for 24 hours. NF-kB activation was assessed based on luciferase production in cell lysates and IL-8 concentration in cell culture media. Effects of HCA on intracellular proteins were analysed in cellular fractions which were prepared using nuclear extraction kits and the proteins were analysed using Western blotting, ELISA, binding assays, kinase assays and transcription, translation assays. In vivo experiments were conducted to determine the optimal route, therapeutic window and the benefits of using purified sub-populations of MSCs in a rodent model of recovery following VILI. VILI was induced using high pressure ventilation until a severe lung injury, as evidenced by a 50% drop in lung compliance, was induced. Following establishment of the injury, the animals were then treated with BM-MSCs (4x106cells/kg; IV, IT or IP), either immediately post injury or 0, 6 or 24 hours post injury, depending on the specific experimental protocol. The ORB-1+ and ORB-1- sub-populations of MSCs were compared to heterogeneous "parental" MSCs. At 24 or 48 hours following VILI, animals were harvested and analysis performed to determine the extent of repair of the lung injury. Key indices of injury and recovery assessed included arterial oxygenation, lung compliance, lung inflammation, cytokine response and histologic morphology. Results: HCA was demonstrated to reduced NF-kB activation in pulmonary and systemic cell lines as indicated by both luciferase assay and IL-8 ELISA. HCA also suppressed NF-kB pathway activation following over-expression of key pathway proteins. HCA was shown to affect protein activation by inhibiting phosphorylation and kinase activity as demonstrated using ELISA and in vitro kinase assays. Further to this HCA was shown to decrease NF-kB dimer activity and the binding of NF-kB to its consensus sequence, but not the formation of these dimers in vitro. HCA was shown to inhibit transcription factor to DNA binding and subsequent transcription and translation. In vivo, it was determined that an optimal dose of 4x106cells/kg was effective in the attenuation of VILI when administered IT or IV up to 24 hours post injury. This was demonstrated by improvements in arterial blood oxygenation, static lung compliance, cytokine profiles and histological morphology compared to controls. In addition to this the use of a particular, more rigorously defined, sub-population of cells was almost as effective as mixed, parental populations of MSCs. Conclusions: The application of therapeutic HCA to injured pulmonary and systemic cell lines suppress NF-kB activation by acting at multiple points in the pathway. Further to this, HCA reduces the ability of NF-kB complexes to translocate to the nucleus, bind to DNA and potentially decreases their ability to initiate transcription. The administration of hMSCs IV or IT demonstrates superior efficacy to IP administration to an animal model of VILI. In addition, these cells can be administered up to 24 hours post injury without significant loss in efficacy toward repair and recovery. The use of ORB-1 hMSC sub-populations confers no additional benefit in the repair and recovery following VILI
    corecore