26 research outputs found

    Thermodynamique de la fusion partielle du manteau terrestre en présence de CO₂-H₂O

    Get PDF
    The link between volatiles (CO₂-H₂O) and mantle melting has so far been illuminated by experiments. A large experimental database exists and emphasizes the importance of volatiles on lowering solidus temperatures of peridotite and modifying the melt composition as a function of P – T – fo₂ – bulk composition. Nevertheless, the diversity and the complexity of this experimental database may complicate its global understanding. In this study, an analysis of CO₂-H₂O-rich melt composition is done, emphasizing the non-linear and more or less abrupt character of the transition between carbonate-rich melts and silicate-rich melts. A thermodynamic model is accomplished to calculate the silica activity in CO₂-H₂O-rich melts coexisting with peridotite assemblage and covering carbonatitic to basaltic terms. Along an oceanic ridge adiabat, the model predicts that carbonatitic melts can be stabilized at the onset of “redox melting” (transition between graphite/diamond-carbonates) to about 100 km depth, before abruptly evolving towards carbonated silicate melts. In cratons, Group I kimberlites are stabilized at the base of the lithosphere (about 250 km depth), and can originate from a mantle plume. The thickness of the lithosphere prevents the plume ascent and the production of OIB. In the aim of describing the melt thermodynamic properties more precisely, a more complex model (system CMAS-CO₂) is under construction, with a modified methodology relative to the previous model of silica activity; a specific effort is here conducted in order to better consider experimental and thermodynamic uncertainties.Le lien entre les éléments volatils CO₂-H₂O et la fusion mantellique a depuis maintenant longtemps été illuminé par l’expérimentation. Une large base de données expérimentales existe et souligne l’effet primordial de ces éléments sur l’abaissement des températures de fusion de la péridotite ainsi que sur la composition des liquides magmatiques produits comme une fonction des conditions P – T – fo₂ – composition du système. Néanmoins, la diversité et la complexité de cette base de données peuvent compliquer sa compréhension globale. Dans cette étude, une analyse détaillée de la composition des liquides magmatiques riches en CO₂ et H₂O est réalisée, soulignant notamment une transition non-linéaire et plus ou moins abrupte entre des liquides carbonatitiques et des liquides silicatés. Un modèle thermodynamique est élaboré afin de calculer l’activité de SiO₂ dans les liquides magmatiques riches en CO₂-H₂O (aSiO₂(l)) et coexistant avec un assemblage péridotitique, depuis des termes carbonatitiques jusqu’à des termes basaltiques. L’application de ce modèle dans des conditions de ride océanique prédit la stabilisation des liquides carbonatitiques au démarrage de la fusion redox (liée à la transition graphite/diamant- carbonates) jusqu’à environ 100 km de profondeur, avant d’évoluer plus ou moins abruptement vers des liquides silicatés riche en CO₂. Au niveau des cratons, les kimberlites de Groupe I sont stabilisés en base de lithosphère (~250 km de profondeur), et peuvent être formés à partir d’un plume mantellique. L’épaisseur de cette lithosphère empêche la remontée du plume et la formation des OIB. Afin de décrire plus pleinement les propriétés thermodynamiques du liquide magmatique, un modèle plus complexe (système CMAS-CO₂) est en construction, dont la méthodologie est modifiée par rapport au précédent modèle calculant aSiO₂(l) ; un effort tout particulier est ici mené afin de mieux considérer les incertitudes expérimentales et thermodynamiques

    A model for the activity of silica along the carbonatite-kimberlite-mellilitite-basanite melt compositional joint

    Get PDF
    International audienceCarbon dioxide and water, being present in the Earth’s mantle at concentration levels of tens to hundreds of ppm, greatly lower the peridotite solidus temperature and drastically modify the composition of produced melts. The presence of CO2 produces silica-poor, carbonate-rich liquids at the onset of melting, and these liquids shift toward silica rich compositions as the degree of melting increases. Numerous geochemical observations and experimental studies have revealed the complexity of the transition between carbonate-rich and silicate-rich melts. It is characterized by a strongly non-linear evolution and, under specific conditions, by immiscibility. To better constrain this transition, we have used the thermodynamic activity of silica as a probe of the mixing properties between molten carbonate and molten silicate. The activity of silica (image) was calculated for a large number of experimental liquids from two equilibria: olivine-orthopyroxene-melt and immiscible silicate-rich melt-carbonate-rich melt (491 data points ranging from 1 to 14 GPa and 1090 to 1800°C). We modeled image during incipient melting of the peridotite in presence of CO2 with a generalized Margules function. Our model well reproduces the silica activity–composition relationships of the experimental database, and can be used to predict the silica content of the melts coexisting with olivine and orthopyroxene. We show that water content and Ca/Mg ratio in the melts have an important influence on the image. In contrast to a recent empirical model (Dasgupta et al., 2013), the analysis of the experimental database reveals that the transition from carbonate to silicate melt with decreasing depth should occur abruptly in oceanic mantle. Our model predict that carbonatitic melts with ~ 5 wt.% SiO2 can be stabilized from ~ 150 km depth, at the onset of incipient melting by “redox melting”, up to ~ 75 km, above which the liquid evolves abruptly to a carbonated silicate composition (> ~ 25 wt.% SiO2). In the cratonic mantle lithosphere, our model predicts that carbonatitic melts are prevailing up to shallow depth, and conflicts the recent model (Russell et al., 2012) of CO2-saturation triggered by orthopyroxene assimilation during kimberlite ascent

    CO 2 Solubility in Kimberlite melts CO 2 Solubility in Kimberlite melts

    Get PDF
    International audienceCarbon dioxide is the most abundant volatile in kimberlite melts and its solubility exerts a prime influence on the melt structure, buoyancy, transport rate and hence eruption dynamics. The actual primary composition of kimberlite magma is the matter of some debate but the solubility of CO2 in kimberlitic melts is also poorly constrained due to difficulties in quenching these compositions to a glass that retains the equilibrium CO2 content. In this study we used a range of synthetic, melt compositions with broadly kimberlitic to carbonatitic characteristics which can, under certain conditions, be quenched fast enough to produce a glass. These materials are used to determine the CO2 solubility as a function of chemical composition and pressure (0.05-1.5 GPa). Our results suggest that the solubility of CO2 decreases steadily with increasing amount of network forming cations from ~ 30 wt% CO2 at 12 wt% SiO2 down to ~ 3 wt% CO2 at 40 wt% SiO2. For low silica melts, CO2 solubility correlates non-linearly with pressure showing a sudden increase from 0.1 to 100 MPa and a smooth increase for pressure > 100 MPa. This peculiar pressure-solubility relationship in low silica melts implies that CO2 degassing must mostly occur within the last 3 km of ascent to the surface having potential links with the highly explosive nature of kimberlite magmas and some of the geo-morphological features of their root zone. We present an empirical CO2 solubility model covering a large range of melt composition from 11 to 55 wt% SiO2 spanning the transition from carbonatitic to kimberlitic at pressures from 1500 to 50 MPa

    Electrical conductivity during incipient melting in the oceanic low-velocity zone

    Get PDF
    International audienceThe low-viscosity layer in the upper mantle, the asthenosphere, is a requirement for plate tectonics1. The seismic low velocities and the high electrical conductivities of the asthenosphere are attributed either to subsolidus, water-related defects in olivine minerals2, 3, 4 or to a few volume per cent of partial melt5, 6, 7, 8, but these two interpretations have two shortcomings. First, the amount of water stored in olivine is not expected to be higher than 50 parts per million owing to partitioning with other mantle phases9 (including pargasite amphibole at moderate temperatures10) and partial melting at high temperatures9. Second, elevated melt volume fractions are impeded by the temperatures prevailing in the asthenosphere, which are too low, and by the melt mobility, which is high and can lead to gravitational segregation11, 12. Here we determine the electrical conductivity of carbon-dioxide-rich and water-rich melts, typically produced at the onset of mantle melting. Electrical conductivity increases modestly with moderate amounts of water and carbon dioxide, but it increases drastically once the carbon dioxide content exceeds six weight per cent in the melt. Incipient melts, long-expected to prevail in the asthenosphere10, 13, 14, 15, can therefore produce high electrical conductivities there. Taking into account variable degrees of depletion of the mantle in water and carbon dioxide, and their effect on the petrology of incipient melting, we calculated conductivity profiles across the asthenosphere for various tectonic plate ages. Several electrical discontinuities are predicted and match geophysical observations in a consistent petrological and geochemical framework. In moderately aged plates (more than five million years old), incipient melts probably trigger both the seismic low velocities and the high electrical conductivities in the upper part of the asthenosphere, whereas in young plates4, where seamount volcanism occurs6, a higher degree of melting is expected

    Thermodynamics of melting in the Earth’s mantle in presence of CO₂-H₂O

    No full text
    Le lien entre les éléments volatils CO₂-H₂O et la fusion mantellique a depuis maintenant longtemps été illuminé par l’expérimentation. Une large base de données expérimentales existe et souligne l’effet primordial de ces éléments sur l’abaissement des températures de fusion de la péridotite ainsi que sur la composition des liquides magmatiques produits comme une fonction des conditions P – T – fo₂ – composition du système. Néanmoins, la diversité et la complexité de cette base de données peuvent compliquer sa compréhension globale. Dans cette étude, une analyse détaillée de la composition des liquides magmatiques riches en CO₂ et H₂O est réalisée, soulignant notamment une transition non-linéaire et plus ou moins abrupte entre des liquides carbonatitiques et des liquides silicatés. Un modèle thermodynamique est élaboré afin de calculer l’activité de SiO₂ dans les liquides magmatiques riches en CO₂-H₂O (aSiO₂(l)) et coexistant avec un assemblage péridotitique, depuis des termes carbonatitiques jusqu’à des termes basaltiques. L’application de ce modèle dans des conditions de ride océanique prédit la stabilisation des liquides carbonatitiques au démarrage de la fusion redox (liée à la transition graphite/diamant- carbonates) jusqu’à environ 100 km de profondeur, avant d’évoluer plus ou moins abruptement vers des liquides silicatés riche en CO₂. Au niveau des cratons, les kimberlites de Groupe I sont stabilisés en base de lithosphère (~250 km de profondeur), et peuvent être formés à partir d’un plume mantellique. L’épaisseur de cette lithosphère empêche la remontée du plume et la formation des OIB. Afin de décrire plus pleinement les propriétés thermodynamiques du liquide magmatique, un modèle plus complexe (système CMAS-CO₂) est en construction, dont la méthodologie est modifiée par rapport au précédent modèle calculant aSiO₂(l) ; un effort tout particulier est ici mené afin de mieux considérer les incertitudes expérimentales et thermodynamiques.The link between volatiles (CO₂-H₂O) and mantle melting has so far been illuminated by experiments. A large experimental database exists and emphasizes the importance of volatiles on lowering solidus temperatures of peridotite and modifying the melt composition as a function of P – T – fo₂ – bulk composition. Nevertheless, the diversity and the complexity of this experimental database may complicate its global understanding. In this study, an analysis of CO₂-H₂O-rich melt composition is done, emphasizing the non-linear and more or less abrupt character of the transition between carbonate-rich melts and silicate-rich melts. A thermodynamic model is accomplished to calculate the silica activity in CO₂-H₂O-rich melts coexisting with peridotite assemblage and covering carbonatitic to basaltic terms. Along an oceanic ridge adiabat, the model predicts that carbonatitic melts can be stabilized at the onset of “redox melting” (transition between graphite/diamond-carbonates) to about 100 km depth, before abruptly evolving towards carbonated silicate melts. In cratons, Group I kimberlites are stabilized at the base of the lithosphere (about 250 km depth), and can originate from a mantle plume. The thickness of the lithosphere prevents the plume ascent and the production of OIB. In the aim of describing the melt thermodynamic properties more precisely, a more complex model (system CMAS-CO₂) is under construction, with a modified methodology relative to the previous model of silica activity; a specific effort is here conducted in order to better consider experimental and thermodynamic uncertainties

    Thermodynamique de la fusion partielle du manteau terrestre en présence de CO₂-H₂O

    No full text
    The link between volatiles (CO₂-H₂O) and mantle melting has so far been illuminated by experiments. A large experimental database exists and emphasizes the importance of volatiles on lowering solidus temperatures of peridotite and modifying the melt composition as a function of P – T – fo₂ – bulk composition. Nevertheless, the diversity and the complexity of this experimental database may complicate its global understanding. In this study, an analysis of CO₂-H₂O-rich melt composition is done, emphasizing the non-linear and more or less abrupt character of the transition between carbonate-rich melts and silicate-rich melts. A thermodynamic model is accomplished to calculate the silica activity in CO₂-H₂O-rich melts coexisting with peridotite assemblage and covering carbonatitic to basaltic terms. Along an oceanic ridge adiabat, the model predicts that carbonatitic melts can be stabilized at the onset of “redox melting” (transition between graphite/diamond-carbonates) to about 100 km depth, before abruptly evolving towards carbonated silicate melts. In cratons, Group I kimberlites are stabilized at the base of the lithosphere (about 250 km depth), and can originate from a mantle plume. The thickness of the lithosphere prevents the plume ascent and the production of OIB. In the aim of describing the melt thermodynamic properties more precisely, a more complex model (system CMAS-CO₂) is under construction, with a modified methodology relative to the previous model of silica activity; a specific effort is here conducted in order to better consider experimental and thermodynamic uncertainties.Le lien entre les éléments volatils CO₂-H₂O et la fusion mantellique a depuis maintenant longtemps été illuminé par l’expérimentation. Une large base de données expérimentales existe et souligne l’effet primordial de ces éléments sur l’abaissement des températures de fusion de la péridotite ainsi que sur la composition des liquides magmatiques produits comme une fonction des conditions P – T – fo₂ – composition du système. Néanmoins, la diversité et la complexité de cette base de données peuvent compliquer sa compréhension globale. Dans cette étude, une analyse détaillée de la composition des liquides magmatiques riches en CO₂ et H₂O est réalisée, soulignant notamment une transition non-linéaire et plus ou moins abrupte entre des liquides carbonatitiques et des liquides silicatés. Un modèle thermodynamique est élaboré afin de calculer l’activité de SiO₂ dans les liquides magmatiques riches en CO₂-H₂O (aSiO₂(l)) et coexistant avec un assemblage péridotitique, depuis des termes carbonatitiques jusqu’à des termes basaltiques. L’application de ce modèle dans des conditions de ride océanique prédit la stabilisation des liquides carbonatitiques au démarrage de la fusion redox (liée à la transition graphite/diamant- carbonates) jusqu’à environ 100 km de profondeur, avant d’évoluer plus ou moins abruptement vers des liquides silicatés riche en CO₂. Au niveau des cratons, les kimberlites de Groupe I sont stabilisés en base de lithosphère (~250 km de profondeur), et peuvent être formés à partir d’un plume mantellique. L’épaisseur de cette lithosphère empêche la remontée du plume et la formation des OIB. Afin de décrire plus pleinement les propriétés thermodynamiques du liquide magmatique, un modèle plus complexe (système CMAS-CO₂) est en construction, dont la méthodologie est modifiée par rapport au précédent modèle calculant aSiO₂(l) ; un effort tout particulier est ici mené afin de mieux considérer les incertitudes expérimentales et thermodynamiques

    Origins of cratonic mantle discontinuities: A view from petrology, geochem- istry and thermodynamic models

    No full text
    International audienceGeophysically detectible mid-lithospheric discontinuities (MLD) and lithosphere-asthenosphere boundaries (LAB) beneath cratons have received much attention over recent years, but a consensus on their origin has not yet emerged. Cratonic lithosphere composition and origin is peculiar due to its ultra-depletion during plume or accretionary tectonics, cool present-day geothermal gradients, compositional and rheological stratification and multiple metasomatic overprints. Bearing this in mind, we integrate current knowledge on the physical properties, chemical composition, mineralogy and fabric of cratonic mantle with experimental and thermodynamic constraints on the formation and migration of melts, both below and within cratonic lithosphere, in order to find petrologically viable explanations for cratonic mantle discontinuities.LABs characterised by strong seismic velocity gradients and increased conductivity require the presence of melts, which can form beneath intact cratonic roots reaching to ~ 200-250 km depth only in exceptionally warm and/or volatile-rich mantle, thus explaining the paucity of seismical LAB observations beneath cratons. When present, pervasive interaction of these - typically carbonated - melts with the deep lithosphere leads to densification and thermochemical erosion, which generates topography at the LAB and results in intermittent seismic LAB signals or conflicting seismic, petrologic and thermal LAB depths. In rare cases (e.g. Tanzanian craton), the tops of live melt percolation fronts may appear as MLDs and, after complete lithosphere rejuvenation, may be sites of future, shallower LABs (e.g. North China craton).Since intact cratons are presently tectonomagmatically quiescent, and since MLDs produce both positive and negative velocity gradients, in some cases with anisotropy, most MLDs may be best explained by accumulations (metasomes) of seismically slow minerals (pyroxenes, phlogopite, amphibole, carbonates) deposited during past magmatic-metasomatic activity, or fabric inherited from cratonisation. They may accumulate as layers at, or as subvertical veins above, the depth at which melt flow transitions from pervasive to focussed flow at the mechanical boundary layer, causing azimuthal and radial anisotropy. Thermodynamic calculations investigating the depth range in which small-volume melts can be produced relative to the field of phlogopite stability and the presence of MLDs show that phlogopite precipitates at various pressures as a function of age-dependent thermal state of the cratonic mantle, thus explaining variable MLD depths. Even if not directly observed, such metasomes have been shown to be important ingredients in small-volume volatile-rich melts typically penetrating cratonic lithospheres. The apparent sparseness of evidence for phlogopite-rich assemblages in the mantle xenolith record at geophysically imaged MLD depths, if not due to preferential disaggregation in the kimberlite or alteration, may relate to vagaries of both kimberlite and human sampling

    Towards the definition of a petrological Low Velocity Zone (LVZ)

    No full text
    International audienceCarbon and others volatiles that are present in the Earth's mantle at ppm concentrationlevels, induce partial melting. CO2-H2O-rich melts are stable under the P-T-fO2conditions of the Low Velocity Zone (LVZ). Recent experimental studies about theEarth mantle conductivity have shown the primordial importance of small amounts ofhydrated CO2-rich melts in the geophysical signature of the LVZ. Nevertheless, thechemical composition of these melts is difficult to capture as it depends on T-P andredox state.Using Margules formalisms, we established a multi-component model describing theGibbs free energy of melt produced by mantle melting in presence of CO2-H2O that arecarbonatite-carbonated melt-nephilinite-basanite and basalt with increasing degree ofpartial melting. This parameterization is calibrated on crystal-liquid, redox, fluid-liquidand liquid-liquid equilibria obtained by experimental studies in the P-T range 1-10 GPaand 900-1800°C.We propose a calculation of the composition of melts produced in the oceanic LVZ as afunction of age. At about 80 km depth, we show that the composition of the melts is >30wt% SiO2 for ages <20 Ma, and comes closer to the carbonatitic terms for olderlithosphere. Besides lateral chemical variations, our model calculates the meltcomposition along an oceanic ridge adiabat, predicting an abrupt compositionaltransition between a H2O-rich carbonatitic melt and a carbonated silicate melt, between140 km and 160 km. With the distance to the ridge, this transition is shifted to lowerdepths between 70 and 90 km. We propose a chemical mapping of the melt composition(and of the degree of partial melting) as a function of the distance to the ridge and of thedepth. The chemical variations between carbonated and silicated melts may be relatedto the geophysical observations

    A multi-component model for partial melting in presence of CO2 and other volatiles in the mantle.

    No full text
    International audienceThe link between volatiles and mantle melting has so far been illuminated by experiments revealing punctually, at a given P-T condition and under a specific chemical system, properties such as solubility laws, redox equiblibra, and phase equilibria. The aim we are pursuing here is to establish a multi-component model describing the Gibbs free energy of melt produced by mantle melting in presence of CO2-H2O: Carbonatite-carbonated melt and basalts. The generated low melt fractions are often dominated by carbonate-rich compositions, whereas with increasing temperature, the melts evolve towards basaltic compositions. However, the transition between carbonate-dominated and silicate-dominated melts is complex and poorly constrained: it is characterized by a continuous evolution between a carbonated melt and a silicated melt, or show, under specific conditions, immiscibility between these two types of liquids. Several studies emphasize the role of alkalis in the immiscibility between a carbonate-dominated melt and a silicate-dominated melt. Consequently, we performed experiments in simplified systems to better understand the influence of each (K and Na) on this immiscibility. In addition, specific experiments on more complex compositions have been performed, in order to give first insights on the role of various volatiles present in the melts: water, chlorine. From a thermodynamic point of view, the carbonate-silicate transition is defined by the activity of the component SiO2 in the liquid and is calculated from experimental data (2-10 GPa, 1100-1600° C) using crystal-liquid and liquid-liquid equilibria. This silicate-carbonate immiscibility constitutes a powerful tool defining the mixing properties of the liquid. The miscibility gap defines equilibrium melts with different compositions, but the melt components are characterized by similar activities. This can be inverted to derive activity-composition relationships that are strictly independent of standard state properties. We will present a parameterization of the mixing properties allowing the complex activity-composition relationships for multi-component carbonated melts to be accounted for. Graphite-liquid and fluid-liquid data allow, for the first time, to constrain the standard state properties of CO2dissolved in liquid, and its activity. Activity-composition relationships for CO2 are strongly non-ideal in carbonated melts, but the presence of water apparently tends to minimize this non-ideality. We suggest that water may have a role on the redox stability of C relative to CO32-, and consequently on the distribution of graphite/diamond vs. carbonate species and on the onset of melting in C-O-H-bearing mantle. We propose several applications allowing the composition of incipient melts to be calculated as a function of depth underneath Mid-Ocean-Ridges and underneath Hot-Spots. In the oceanic mantle, the top of the Lithosphere-Asthenosphere boundary is identified by seismic data as a discontinuity at an average depth of 65 km. This observation correlates with the onset of peridotite melting in presence of both H2O and CO2. Therefore, partial melting must occur at 65 km, implying production of H2O-rich carbonatitic melts as shown by our present model, and which are to the origin of the weakening. This thermodynamic study, supported by experimental investigation, constitutes an essential step in modeling the distribution and fate of volatiles, especially carbon, in the Earth's mantle

    The role of volatiles (H2O, CO2) in the mantle incipient melting captured by a multi-component model

    No full text
    International audienceThe link between volatiles and mantle melting has so far been illuminated byexperiments revealing punctually, at a given P-T condition and under a specificchemical system, properties such as solubility laws, redox equilibria, and phaseequilibria. Our aim is to establish a multi-component model describing the Gibbs freeenergy of melt produced by mantle melting in presence of CO2-H2O: that arecarbonatite-carbonated melt-nephilinite-basanite and basalt with increasing degree ofpartial melting.Near solidus melts are dominated by carbonate-rich compositions, evolving towardsbasaltic compositions at higher temperatures. However, this carbonate-silicatetransition is complex, abrupt, and dependent on temperature, pressure and the chemicalcomposition of the system. In order to simulate partial melting in a variety of mantleconditions, we established a parameterization of the mixing properties allowing thecomplex activity-composition relationships for multi-component hydrated carbonatedmelts to be accounted for. Using the Margules formalism, this parameterization iscalibrated on crystal-liquid, graphite-liquid, fluid-liquid and liquid-liquid equilibriaobtained by experimental studies in the P-T range 1-10 GPa and 900-1800°C. We so faradjusted the activity of the SiO2 and CO2 melt components, which constitutes the mainpart of the silicated and carbonated frameworks. The SiO2-CO2 interaction reveals astrong non-ideality requiring a strongly asymetric Margules formulation. We alsodetermined the standard thermodynamic properties for the CO2 melt component and wehave refined the standard volume properties for liquid SiO2
    corecore