268 research outputs found

    Understanding the robustness difference between stochastic gradient descent and adaptive gradient methods

    Full text link
    Stochastic gradient descent (SGD) and adaptive gradient methods, such as Adam and RMSProp, have been widely used in training deep neural networks. We empirically show that while the difference between the standard generalization performance of models trained using these methods is small, those trained using SGD exhibit far greater robustness under input perturbations. Notably, our investigation demonstrates the presence of irrelevant frequencies in natural datasets, where alterations do not affect models' generalization performance. However, models trained with adaptive methods show sensitivity to these changes, suggesting that their use of irrelevant frequencies can lead to solutions sensitive to perturbations. To better understand this difference, we study the learning dynamics of gradient descent (GD) and sign gradient descent (signGD) on a synthetic dataset that mirrors natural signals. With a three-dimensional input space, the models optimized with GD and signGD have standard risks close to zero but vary in their adversarial risks. Our result shows that linear models' robustness to â„“2\ell_2-norm bounded changes is inversely proportional to the model parameters' weight norm: a smaller weight norm implies better robustness. In the context of deep learning, our experiments show that SGD-trained neural networks show smaller Lipschitz constants, explaining the better robustness to input perturbations than those trained with adaptive gradient methods

    Numerical study of hydrodynamic characteristics of gas liquid slug flow in vertical pipes

    Get PDF
    Multiphase flows occur in wide applications including; nuclear, chemical, and petroleum industries. One of the most important flow regime encountered in multiphase flow is the slug flow which is often encountered in oil and gas production systems. The slugging problems may cause flooding of downstream processing facilities, severe pipe corrosion and the structural instability of pipeline and further induce the reservoir flow oscillations, and a poor reservoir management. In the present study, computational fluid dynamics simulation is used to investigate two phase slug flow in vertical pipe using the volume of fluid (VOF) methodology implemented in the commercial code ANSYS Fluent. Theviscous, inertial, and interfacial forces have the significant effect on the hydrodynamic characteristics of two-phase slug flow. These forces can have investigated by introducing a set of dimensionless numbers, namely; inverse viscosity number, Nf, Eotvos number, Eo, and Froude number, FrTB. The simulation accounts for the hydrodynamic features of two phase slug flow including; the shape of Taylor bubble, bubble profile, velocity and thickness of the falling film, wake flow pattern, and wall shear stress distribution. The CFD simulation results are in good agreement with previous experimental data and models available in literature

    Improving Adversarial Transferability via Model Alignment

    Full text link
    Neural networks are susceptible to adversarial perturbations that are transferable across different models. In this paper, we introduce a novel model alignment technique aimed at improving a given source model's ability in generating transferable adversarial perturbations. During the alignment process, the parameters of the source model are fine-tuned to minimize an alignment loss. This loss measures the divergence in the predictions between the source model and another, independently trained model, referred to as the witness model. To understand the effect of model alignment, we conduct a geometric anlaysis of the resulting changes in the loss landscape. Extensive experiments on the ImageNet dataset, using a variety of model architectures, demonstrate that perturbations generated from aligned source models exhibit significantly higher transferability than those from the original source model

    Diverse coordination numbers and geometries in pyridyl adducts of lanthanide(III) complexes based on beta-diketonate

    Get PDF
    t: Ten mononuclear rare earth complexes of formula [La(btfa)3 (H2O)2 ] (1), [La(btfa)3 (4,40 - Mt2bipy)] (2), [La(btfa)3 (4,40 -Me2bipy)2 ] (3), [La(btfa)3 (5,50 -Me2bipy)2 ] (4), [La(btfa)3 (terpy)] (5), [La(btfa)3 (phen)(EtOH)] (6), [La(btfa)3 (4,40 -Me2bipy)(EtOH)] (7), [La(btfa)3 (2-benzpy)(MeOH)] (8), [Tb(btfa)3 (4,40 -Me2bipy)] (9) and (Hpy)[Eu(btfa)4 ] (10), where btfa = 4,4,4-trifuoro-1-phenylbutane1,3-dionato anion, 4,40 -Mt2bipy = 4,40 -dimethoxy-2,20 -bipyridine, 4,40 -Me2bipy = 4,40 -dimethyl2,20 -bipyridine, 5,50 -Me2bipy = 5,50 -dimethyl-2,20 -bipyridine, terpy = 2,20 :60 ,20 -terpyridine, phen = 1,10-phenathroline, 2-benzpy = 2-(2-pyridyl)benzimidazole, Hpy = pyridiniumH+ cation) have been synthesized and structurally characterized. The complexes display coordination numbers (CN) eight for 1, 2, 9, 10, nine for 5, 6, 7, 8 and ten for 3 and 4. The solid-state luminescence spectra of Tb-9 and Eu-10 complexes showed the same characteristic bands predicted from the Tb(III) and Eu(III) ions. The Overall Quantum Yield measured (φTOT) at the excitation wavelength of 371 nm for both compounds yielded 1.04% for 9 and up to 34.56% for 10 years

    Steam generation in a nanoparticle-based solar receiver

    Get PDF
    Steam production is essential for a wide range of applications, and currently there is still strong debate if steam could be generated on top of heated nanoparticles in a solar receiver. We performed steam generation experiments for different concentrations of gold nanoparticles dispersions in a cylindrical receiver under focused natural sunlight of 220 Suns. Combined with mathematical modelling, it is found that steam generation is mainly caused by localized boiling and vaporization in the superheated region due to highly non-uniform temperature and radiation energy distribution, albeit the bulk fluid is still subcooled. Such a phenomenon can be well explained by the classical heat transfer theory, and the hypothesized ‘nanobubble’, i.e., steam produced around the heated nanoparticles, is unlikely to occur under normal solar concentrations. In the future solar receiver design, more solar energy should be focused and trapped at the superheated region while minimizing the temperature rise of the bulk fluid

    Swirl Flow Bioreactor coupled with Cu-alginate beads: A system for the eradication of Coliform and Escherichia coli from biological effluents.

    Get PDF
    It is estimated that approximately 1.1 billion people globally drink unsafe water. We previously reported both a novel copper-alginate bead, which quickly reduces pathogen loading in waste streams and the incorporation of these beads into a novel swirl flow bioreactor (SFB), of low capital and running costs and of simple construction from commercially available plumbing pipes and fittings. The purpose of the present study was to trial this system for pathogen reduction in waste streams from an operating Dewats system in Hinjewadi, Pune, India and in both simulated and real waste streams in Seattle, Washington, USA. The trials in India, showed a complete inactivation of coliforms in the discharged effluent (Mean Log removal Value (MLRV) = 3.51), accompanied by a total inactivation of E. coli with a MLRV of 1.95. The secondary clarifier effluent also showed a 4.38 MLRV in viable coliforms during treatment. However, the system was slightly less effective in reducing E. coli viability, with a MLRV of 1.80. The trials in Seattle also demonstrated the efficacy of the system in the reduction of viable bacteria, with a LRV of 5.67 observed of viable Raoultella terrigena cells (100%)

    How to (or Not to) Integrate Vertical Programmes for the Control of Major Neglected Tropical Diseases in Sub-Saharan Africa

    Get PDF
    Combining the delivery of multiple health interventions has the potential to minimize costs and expand intervention coverage. Integration of mass drug administration is therefore being encouraged for delivery of preventive chemotherapy (PCT) to control onchocerciasis, lymphatic filariasis, schistosomiasis, soil-transmitted helminthiasis, and trachoma in sub-Saharan Africa, as there is considerable geographical overlap of these neglected tropical diseases (NTDs). With only a handful of countries having embarked on integrated NTD control, experience on how to develop and implement an efficient integrated programme is limited. Historically, national and global programmes were focused on the control of only one disease, usually through a comprehensive approach that involved several interventions including PCT. Overcoming the resulting disease-specific structures and thinking, and ensuring that the integrated programme is embedded within the existing health structures, pose considerable challenges to policy makers and implementers wishing to embark on integrated NTD control. By sharing experiences from Uganda, Tanzania, Southern Sudan, and Mozambique, this symposium article aims to outlines key challenges and solutions to assist countries in establishing efficient integrated NTD programmes

    Effect of Acinetobacter sp on Metalaxyl Degradation and Metabolite Profile of Potato Seedlings (Solanum tuberosum L.) Alpha Variety

    Get PDF
    One of the most serious diseases in potato cultivars is caused by the pathogen Phytophthora infestans, which affects leaves, stems and tubers. Metalaxyl is a fungicide that protects potato plants from Phytophthora infestans. In Mexico, farmers apply metalaxyl 35 times during the cycle of potato production and the last application is typically 15 days before harvest. There are no records related to the presence of metalaxyl in potato tubers in Mexico. In the present study, we evaluated the effect of Acinetobacter sp on metalaxyl degradation in potato seedlings. The effect of bacteria and metalaxyl on the growth of potato seedlings was also evaluated. A metabolite profile analysis was conducted to determine potential molecular biomarkers produced by potato seedlings in the presence of Acinetobacter sp and metalaxyl. Metalaxyl did not affect the growth of potato seedlings. However, Acinetobacter sp strongly affected the growth of inoculated seedlings, as confirmed by plant length and plant fresh weights which were lower in inoculated potato seedlings (40% and 27%, respectively) compared to the controls. Acinetobacter sp also affected root formation. Inoculated potato seedlings showed a decrease in root formation compared to the controls. LC-MS/MS analysis of metalaxyl residues in potato seedlings suggests that Acinetobacter sp did not degrade metalaxyl. GC–TOF–MS platform was used in metabolic profiling studies. Statistical data analysis and metabolic pathway analysis allowed suggesting the alteration of metabolic pathways by both Acinetobacter sp infection and metalaxyl treatment. Several hundred metabolites were detected, 137 metabolites were identified and 15 metabolic markers were suggested based on statistical change significance found with PLS-DA analysis. These results are important for better understanding the interactions of putative endophytic bacteria and pesticides on plants and their possible effects on plant metabolism

    Borrelia Burgdorferi Induces a Type I Interferon Response During Early Stages of Disseminated Infection in Mice

    Get PDF
    BACKGROUND: Lyme borrelia genotypes differ in their capacity to cause disseminated disease. Gene array analysis was employed to profile the host transcriptome induced by Borrelia burgdorferi strains with different capacities for causing disseminated disease in the blood of C3H/HeJ mice during early infection. RESULTS: B. burgdorferi B515, a clinical isolate that causes disseminated infection in mice, differentially regulated 236 transcripts (P \u3c 0.05 by ANOVA, with fold change of at least 2). The 216 significantly induced transcripts included interferon (IFN)-responsive genes and genes involved in immunity and inflammation. In contrast, B. burgdorferi B331, a clinical isolate that causes transient skin infection but does not disseminate in C3H/HeJ mice, stimulated changes in only a few genes (1 induced, 4 repressed). Transcriptional regulation of type I IFN and IFN-related genes was measured by quantitative RT-PCR in mouse skin biopsies collected from the site of infection 24 h after inoculation with B. burgdorferi. The mean values for transcripts of Ifnb, Cxcl10, Gbp1, Ifit1, Ifit3, Irf7, Mx1, and Stat2 were found to be significantly increased in B. burgdorferi strain B515-infected mice relative to the control group. In contrast, transcription of these genes was not significantly changed in response to B. burgdorferi strain B331 or B31-4, a mutant that is unable to disseminate. CONCLUSIONS: These results establish a positive association between the disseminating capacity of B. burgdorferi and early type I IFN induction in a murine model of Lyme disease
    • …
    corecore