115 research outputs found

    Methane release from gas hydrates in the Rock Garden of the Hikurangi margin, New Zealand

    Get PDF
    Dissolved methane and high resolution bathymetry surveys were conducted over the Rock Garden region of Ritchie Ridge, along the Hikurangi margin, eastern New Zealand. Multibeam bathymetry reveals two prominent, northeast trending ridges, parallel to subduction along the margin, that are steep sided and extensively slumped. Elevated concentrations of methane (up to 10 nM, 10× background) within the water column are associated with a slump structure at the southern end of Eastern Rock Garden. The anomalous methane concentrations were detected by a methane sensor (METS) attached to a conductivity‐temperature‐depth‐optical backscatter device (CTDO) and are associated with elevated light scattering and flare‐shaped backscatter signals revealed by the ship's echo sounder. Increased particulate matter in the water column, possibly related to the seepage and/or higher rates of erosion near slump structures, is considered to be the cause of the increased light scattering, rather than bubbles in the water column. Methane concentrations calculated from the METS are in good agreement with concentrations measured by gas chromatography in water samples collected at the same time. However, there is a c. 20 min (c. 900 m) delay in the METS signal reaching maximum CH4 concentrations. The maximum methane concentration occurs near the plateau of Eastern Rock Garden close to the edge of a slump, at 610 m below sea level (mbsl). This is close to the depth (c. 630 mbsl) where a bottom simulating reflector (BSR) pinches out at the seafloor. Fluctuating water temperatures observed in previous studies indicate that the stability zone for pure methane hydrate in the ocean varies between 630 and 710 mbsl. However, based on calculations of the geothermal gradients from BSRs, we suggest gas hydrate in the study area to be more stable than hydrate from pure methane in sea water, moving the phase boundary in the ocean upward. Small fractions of additional higher order hydrocarbon gases are the most likely cause for increased hydrate stability. Relatively high methane concentrations have been measured down to c. 1000 mbsl, most likely in response to sediment slumping caused by gas hydrate destabilisation of the sediments and/or marking seepage through the gas hydrate zone

    The Effect of Arc Proximity on Hydrothermal Activity Along Spreading Centers: New Evidence From the Mariana Back Arc (12.7°N-18.3°N)

    Get PDF
    Back-arc spreading centers (BASCs) form a distinct class of ocean spreading ridges distinguished by steep along-axis gradients in spreading rate and by additional magma supplied through subduction. These characteristics can affect the population and distribution of hydrothermal activity on BASCs compared to mid-ocean ridges (MORs). To investigate this hypothesis, we comprehensively explored 600 km of the southern half of the Mariana BASC. We used water column mapping and seafloor imaging to identify 19 active vent sites, an increase of 13 over the current listing in the InterRidge Database (IRDB), on the bathymetric highs of 7 of the 11 segments. We identified both high and low (i.e., characterized by a weak or negligible particle plume) temperature discharge occurring on segment types spanning dominantly magmatic to dominantly tectonic. Active sites are concentrated on the two southernmost segments, where distance to the adjacent arc is shortest (48 mm/yr), and tectonic extension is pervasive. Re-examination of hydrothermal data from other BASCs supports the generalization that hydrothermal site density increases on segments <90 km from an adjacent arc. Although exploration quality varies greatly among BASCs, present data suggest that, for a given spreading rate, the mean spatial density of hydrothermal activity varies little between MORs and BASCs. The present global database, however, may be misleading. On both BASCs and MORs, the spatial density of hydrothermal sites mapped by high-quality water-column surveys is 2–7 times greater than predicted by the existing IRDB trend of site density versus spreading rate

    Hydrothermal venting at Vailulu'u Seamount : the smoking end of the Samoan chain

    Get PDF
    Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 5 (2004): Q02003, doi:10.1029/2003GC000626.The summit crater of Vailulu'u Seamount, the youngest volcano in the Samoan chain, hosts an active hydrothermal system with profound impact on the ocean water column inside and around its crater (2 km wide and 407 m deep at a 593 m summit depth). The turbidity of the ocean water reaches 1.4 NTU, values that are higher than in any other submarine hydrothermal system. The water is enriched in hydrothermal Mn (3.8 ppb) and 3He (1 × 10−11 cc/g) and we measured water temperature anomalies near the crater floor up to 0.2°C. The hydrothermal system shows complex interactions with the ocean currents around Vailulu'u that include tidally-modulated vertical motions of about 40–50 m, and replenishment of waters into the crater through breaches in the upper half of the crater wall. Inside and outside potential density gradients suggest that hydrothermal venting exports substantial amounts of water from the crater (1.3 ± 0.2 × 108 m3/day), which is in good agreement with fluxes obtained from a tracer release experiment inside the crater of Vailulu'u (0.8 × 108 m3/day [Hart et al., 2003]). This mass flux, in combination with the differences in the inside and outside crater temperature, yields a power output of around 760 megawatts, the equivalent of 20–100 MOR black smokers. The Mn output of 300 kg/day is approximately ten times the output of a single black smoker

    Biomarker-guided implementation of the KDIGO guidelines to reduce the occurrence of acute kidney injury in patients after cardiac surgery (PrevAKI-multicentre) : protocol for a multicentre, observational study followed by randomised controlled feasibility trial

    Get PDF
    Acute kidney injury (AKI) is a frequent complication after cardiac surgery with adverse short-term and long-term outcomes. Although prevention of AKI (PrevAKI) is strongly recommended, the optimal strategy is uncertain. The Kidney Disease: Improving Global Outcomes (KDIGO) guideline recommended a bundle of supportive measures in high-risk patients. In a single-centre trial, we recently demonstrated that the strict implementation of the KDIGO bundle significantly reduced the occurrence of AKI after cardiac surgery. In this feasibility study, we aim to evaluate whether the study protocol can be implemented in a multicentre setting in preparation for a large multicentre trial. We plan to conduct a prospective, observational survey followed by a randomised controlled, multicentre, multinational clinical trial including 280 patients undergoing cardiac surgery with cardiopulmonary bypass. The purpose of the observational survey is to explore the adherence to the KDIGO recommendations in routine clinical practice. The second phase is a randomised controlled trial. The objective is to investigate whether the trial protocol is implementable in a large multicentre, multinational setting. The primary endpoint of the interventional part is the compliance rate with the protocol. Secondary endpoints include the occurrence of any AKI and moderate/severe AKI as defined by the KDIGO criteria within 72 hours after surgery, renal recovery at day 90, use of renal replacement therapy (RRT) and mortality at days 30, 60 and 90, the combined endpoint major adverse kidney events consisting of persistent renal dysfunction, RRT and mortality at day 90 and safety outcomes. The PrevAKI multicentre study has been approved by the leading Research Ethics Committee of the University of MĂŒnster and the respective Research Ethics Committee at each participating site. The results will be used to design a large, definitive trial. Trial registration number NCT03244514

    Tectonic and magmatic controls on hydrothermal activity in the Woodlark Basin

    Get PDF
    The Woodlark Basin is one of the rare places on earth where the transition from continental breakup to seafloor spreading can be observed. The potential juxtaposition of continental rocks, a large magmatic heat source, crustal-scale faulting, and hydrothermal circulation has made the Woodlark Basin a prime target for seafloor mineral exploration. However, over the past 20 years, only two locations of active hydrothermalism had been found. In 2009 we surveyed 435 km of the spreading axis for the presence of hydrothermal plumes. Only one additional plume was found, bringing the total number of plumes known over 520 km of ridge axis to only 3, much less than at ridges with similar spreading rates globally. Particularly the western half of the basin (280 km of axis) is apparently devoid of high temperature plumes despite having thick crust and a presumably high magmatic budget. This paucity of hydrothermal activity may be related to the peculiar tectonic setting at Woodlark, where repeated ridge jumps and a re-location of the rotation pole both lead to axial magmatism being more widely distributed than at many other, more mature and stable mid-ocean ridges. These factors could inhibit the development of both a stable magmatic heat source and the deeply penetrating faults needed to create long-lived hydrothermal systems. We conclude that large seafloor massive sulfide deposits, potential targets for seafloor mineral exploration, will probably not be present along the spreading axis of the Woodlark Basin, especially in its younger, western portion

    Oregon Subduction Zone: Venting, Fauna, and Carbonates

    Get PDF
    Transects of the submersible Alvin across rock outcrops in the Oregon subduction zone have furnished information on the structural and stratigraphic framework of this accretionary complex. Communities of clams and tube worms, and authigenic carbonate mineral precipitates, are associated with venting sites of cool fluids located on a fault-bend anticline at a water depth of 2036 meters. The distribution of animals and carbonates suggests up-dip migration of fluids from both shallow and deep sources along permeable strata or fault zones within these clastic deposits. Methane is enriched in the water column over one vent site, and carbonate minerals and animal tissues are highly enriched in carbon-12. The animals use methane as an energy and food source in symbiosis with microorganisms. Oxidized methane is also the carbon source for the authigenic carbonates that cement the sediments of the accretionary complex. The animal communities and carbonates observed in the Oregon subduction zone occur in strata as old as 2.0 million years and provide criteria for identifying other localities where modern and ancient accreted deposits have vented methane, hydrocarbons, and other nutrient-bearing fluids

    EPIdemiology of Surgery-Associated Acute Kidney Injury (EPIS-AKI) : Study protocol for a multicentre, observational trial

    Get PDF
    More than 300 million surgical procedures are performed each year. Acute kidney injury (AKI) is a common complication after major surgery and is associated with adverse short-term and long-term outcomes. However, there is a large variation in the incidence of reported AKI rates. The establishment of an accurate epidemiology of surgery-associated AKI is important for healthcare policy, quality initiatives, clinical trials, as well as for improving guidelines. The objective of the Epidemiology of Surgery-associated Acute Kidney Injury (EPIS-AKI) trial is to prospectively evaluate the epidemiology of AKI after major surgery using the latest Kidney Disease: Improving Global Outcomes (KDIGO) consensus definition of AKI. EPIS-AKI is an international prospective, observational, multicentre cohort study including 10 000 patients undergoing major surgery who are subsequently admitted to the ICU or a similar high dependency unit. The primary endpoint is the incidence of AKI within 72 hours after surgery according to the KDIGO criteria. Secondary endpoints include use of renal replacement therapy (RRT), mortality during ICU and hospital stay, length of ICU and hospital stay and major adverse kidney events (combined endpoint consisting of persistent renal dysfunction, RRT and mortality) at day 90. Further, we will evaluate preoperative and intraoperative risk factors affecting the incidence of postoperative AKI. In an add-on analysis, we will assess urinary biomarkers for early detection of AKI. EPIS-AKI has been approved by the leading Ethics Committee of the Medical Council North Rhine-Westphalia, of the Westphalian Wilhelms-University MĂŒnster and the corresponding Ethics Committee at each participating site. Results will be disseminated widely and published in peer-reviewed journals, presented at conferences and used to design further AKI-related trials. Trial registration number NCT04165369
    • 

    corecore