548 research outputs found

    Enzymatic synthesis of γ-glutamyl derivatives catalyzed by a new mutant γ-glutamyltransferase with improved transpeptidase activity

    Get PDF
    Despite their potential applicative interest as biologically active compounds and as flavor enhancers, \u3b3-glutamyl derivatives are commercially underexploited compounds. This is mainly due to the difficulties connected with their supply at a reasonable cost. As a consequence, enzymatic approaches to their preparation, based on the use of \u3b3-glutamyltransferases (GGTs), have been proposed1 to circumvent both the low-yielding extractive procedures from natural sources and the troublesome chemical synthesis, rendered uneconomical by the need of protection and deprotection steps. GGTs catalyze the transfer of a \u3b3-glutamyl moiety from a donor substrate (e.g. glutathione) to the primary amino group of an acceptor compound in a so-called transpeptidation reaction, through the formation of a \u3b3-glutamyl-enzyme intermediate. However, also the use of GGTs as biocatalysts is not free from drawbacks. In addition to the transpeptidase activity, GGTs show a non-negligible hydrolase activity towards both the donor substrate and the newly formed transpeptidation product, affording irreversibly glutamic acid.2 In our ongoing studies on bacterial GGTs, we found that the presence of the lid loop \u2013 a short amino acids sequence covering the active site in most of the known GGTs \u2013 not only affects substrate selection, but also modulates hydrolase/transpeptidase activities.3 Within the TailGluTran Project,4 aimed at the development of mutant GGTs with improved transpeptidase activity, is currently under investigation a mutant enzyme obtained by inserting the sequence of the lid loop on the structure of a GGT naturally lacking it. The mutant enzyme shows promising high transpeptidase activity with respect to wild type counterparts and represents a starting point for further modifications in the search of a suitable biocatalyst intended for preparative purposes

    Determination of the Acceleration Region Size in a Loop-structured Solar Flare

    Full text link
    In order to study the acceleration and propagation of bremsstrahlung-producing electrons in solar flares, we analyze the evolution of the flare loop size with respect to energy at a variety of times. A GOES M3.7 loop-structured flare starting around 23:55 on 2002 April 14 is studied in detail using \textit{Ramaty High Energy Solar Spectroscopic Imager} (\textit{RHESSI}) observations. We construct photon and mean-electron-flux maps in 2-keV energy bins by processing observationally-deduced photon and electron visibilities, respectively, through several image-processing methods: a visibility-based forward-fit (FWD) algorithm, a maximum entropy (MEM) procedure and the uv-smooth (UVS) approach. We estimate the sizes of elongated flares (i.e., the length and width of flaring loops) by calculating the second normalized moments of the intensity in any given map. Employing a collisional model with an extended acceleration region, we fit the loop lengths as a function of energy in both the photon and electron domains. The resulting fitting parameters allow us to estimate the extent of the acceleration region which is between ∌13arcsec\sim 13 \rm{arcsec} and ∌19arcsec\sim 19 \rm{arcsec}. Both forward-fit and uv-smooth algorithms provide substantially similar results with a systematically better fit in the electron domain.The consistency of the estimates from these methods provides strong support that the model can reliably determine geometric parameters of the acceleration region. The acceleration region is estimated to be a substantial fraction (∌1/2\sim 1/2) of the loop extent, indicating that this dense flaring loop incorporates both acceleration and transport of electrons, with concurrent thick-target bremsstrahlung emission.Comment: 8 pages, 5 figures, accepted to Astronomy and Astrophysics journa

    Electron-Electron Bremsstrahlung Emission and the Inference of Electron Flux Spectra in Solar Flares

    Full text link
    Although both electron-ion and electron-electron bremsstrahlung contribute to the hard X-ray emission from solar flares, the latter is normally ignored. Such an omission is not justified at electron (and photon) energies above ∌300\sim 300 keV, and inclusion of the additional electron-electron bremsstrahlung in general makes the electron spectrum required to produce a given hard X-ray spectrum steeper at high energies. Unlike electron-ion bremsstrahlung, electron-electron bremsstrahlung cannot produce photons of all energies up to the maximum electron energy involved. The maximum possible photon energy depends on the angle between the direction of the emitting electron and the emitted photon, and this suggests a diagnostic for an upper cutoff energy and/or for the degree of beaming of the accelerated electrons. We analyze the large event of January 17, 2005 observed by RHESSI and show that the upward break around 400 keV in the observed hard X-ray spectrum is naturally accounted for by the inclusion of electron-electron bremsstrahlung. Indeed, the mean source electron spectrum recovered through a regularized inversion of the hard X-ray spectrum, using a cross-section that includes both electron-ion and electron-electron terms, has a relatively constant spectral index ÎŽ\delta over the range from electron kinetic energy E=200E = 200 keV to E=1E = 1 MeV. However, the level of detail discernible in the recovered electron spectrum is not sufficient to determine whether or not any upper cutoff energy exists.Comment: 7 pages, 5 figures, submitted to Astrophysical Journa

    concordance and time estimation of store and forward mobile teledermatology compared to classical face to face consultation

    Get PDF
    Smartphones have overcome the limitations of image quality seen in older devices and opened a new field of telemedicine called "mobile teledermatology". Technological advances and the need to reduce health service costs will strongly promote the development of telemedicine. For this reason, we evaluated the concordance be tween store-and-forward mobile teledermatology and the classical face-to-face dermatological visit. We also measured the time taken to submit a teleconsultation using a smartphone. Before conventional face-to-face visit, a final-year resident of the 3-year course for general practitioners collected medical history, took digital images of skin diseases with a smartphone and, measuring the time required to complete this operation, transmitted them to an expert teledermatologist. In 391 patients we obtained a concordance between face-to-face and store-and-forward diagnosis of 91.05% (Cohen Îș coefficient = 0.906). On average only few minutes needs to be added to a no

    Synthesis of Ribavirin, Tecadenoson, and Cladribine by enzymatic transglycosylation

    Get PDF
    Despite the impressive progress in nucleoside chemistry to date, the synthesis of nucleoside analogues is still a challenge. Chemoenzymatic synthesis has been proven to overcome most of the constraints of conventional nucleoside chemistry. A purine nucleoside phosphorylase from Aeromonas hydrophila (AhPNP) has been used herein to catalyze the synthesis of Ribavirin, Tecadenoson, and Cladribine, by a “one-pot, one-enzyme” transglycosylation, which is the transfer of the carbohydrate moiety from a nucleoside donor to a heterocyclic base. As the sugar donor, 7-methylguanosine iodide and its 2â€Č-deoxy counterpart were synthesized and incubated either with the “purine-like” base or the modified purine of the three selected APIs. Good conversions (49-67%) were achieved in all cases under screening conditions. Following this synthetic scheme, 7-methylguanine arabinoside iodide was also prepared with the purpose to synthesize the antiviral Vidarabine by a novel approach. However, in this case, neither the phosphorolysis of the sugar donor, nor the transglycosylation reaction were observed. This study was enlarged to two other ribonucleosides structurally related to Ribavirin and Tecadenoson, namely, Acadesine, or AICAR, and 2-chloro-N6-cyclopentyladenosine, or CCPA. Only the formation of CCPA was observed (52%). This study paves the way for the development of a new synthesis of the target APIs at a preparative scale. Furthermore, the screening herein reported contributes to the collection of new data about the specific substrate requirements of AhPNP

    The sub-arcsecond hard X-ray structure of loop footpoints in a solar flare

    Full text link
    The newly developed X-ray visibility forward fitting technique is applied to Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) data of a limb flare to investigate the energy and height dependence on sizes, shapes, and position of hard X-ray chromospheric footpoint sources. This provides information about the electron transport and chromospheric density structure. The spatial distribution of two footpoint X-ray sources is analyzed using PIXON, Maximum Entropy Method, CLEAN and visibility forward fit algorithms at nonthermal energies from ∌20\sim 20 to ∌200\sim 200 keV. We report, for the first time, the vertical extents and widths of hard X-ray chromospheric sources measured as a function of energy for a limb event. Our observations suggest that both the vertical and horizontal sizes of footpoints are decreasing with energy. Higher energy emission originates progressively deeper in the chromosphere consistent with downward flare accelerated streaming electrons. The ellipticity of the footpoints grows with energy from ∌0.5\sim 0.5 at ∌20 \sim 20 keV to ∌0.9\sim 0.9 at ∌150\sim 150 keV. The positions of X-ray emission are in agreement with an exponential density profile of scale height ∌150\sim 150~km. The characteristic size of the hard X-ray footpoint source along the limb is decreasing with energy suggesting a converging magnetic field in the footpoint. The vertical sizes of X-ray sources are inconsistent with simple collisional transport in a single density scale height but can be explained using a multi-threaded density structure in the chromosphere.Comment: 7 pages, 7 figures, submitted to Ap

    Melanoma Screening with Cellular Phones

    Get PDF
    Background. Mobile teledermatology has recently been shown to be suitable for teledermatology despite limitations in image definition in preliminary studies. The unique aspect of mobile teledermatology is that this system represents a filtering or triage system, allowing a sensitive approach for the management of patients with emergent skin diseases. Methodology/Principal Findings. In this study we investigated the feasibility of teleconsultation using a new generation of cellular phones in pigmented skin lesions. 18 patients were selected consecutively in the Pigmented Skin Lesions Clinic of the Department of Dermatology, Medical University of Graz, Graz (Austria). Clinical and dermoscopic images were acquired using a Sony Ericsson with a built-in two-megapixel camera. Two teleconsultants reviewed the images on a specific web application (http://www.dermahandy.net/default.asp) where images had been uploaded in JPEG format. Compared to the face-to-face diagnoses, the two teleconsultants obtained a score of correct telediagnoses of 89% and of 91.5% reporting the clinical and dermoscopic images, respectively. Conclusions/Significance. The present work is the first study performing mobile teledermoscopy using cellular phones. Mobile teledermatology has the potential to become an easy applicable tool for everyone and a new approach for enhanced self-monitoring for skin cancer screening in the spirit of the eHealth program of the European Commission Information for Society and Media

    AntarctiCor: Solar Coronagraph in Antarctica for the ESCAPE Project

    Get PDF
    The Antarctica solar coronagraph –AntarctiCor– for the “Extreme Solar Coronagraphy Antarctic Program Experiment” –ESCAPE– comprises an internally-occulted coronagraph based on the externally-occulted ASPIICS coronagraph for the ESA formation-ïŹ‚ying PROBA-3 mission. This paper describes the AntarctiCor design for ground-based observations from the DomeC Antarctica plateau of the polarized broad-band (591 nm ± 5 nm) K-corona and of the narrowband (FWHM = 0.5 nm), polarized emission of the coronal green-line at 530.3 nm. The science goal of these observations is to map the topology and dynamics of the coronal magnetic ïŹeld, addressing coronal heating and space weather questions
    • 

    corecore