548 research outputs found
Enzymatic synthesis of γ-glutamyl derivatives catalyzed by a new mutant γ-glutamyltransferase with improved transpeptidase activity
Despite their potential applicative interest as biologically active compounds and as flavor enhancers, \u3b3-glutamyl derivatives are commercially underexploited compounds. This is mainly due to the difficulties connected with their supply at a reasonable cost. As a consequence, enzymatic approaches to their preparation, based on the use of \u3b3-glutamyltransferases (GGTs), have been proposed1 to circumvent both the low-yielding extractive procedures from natural sources and the troublesome chemical synthesis, rendered uneconomical by the need of protection and deprotection steps.
GGTs catalyze the transfer of a \u3b3-glutamyl moiety from a donor substrate (e.g. glutathione) to the primary amino group of an acceptor compound in a so-called transpeptidation reaction, through the formation of a \u3b3-glutamyl-enzyme intermediate. However, also the use of GGTs as biocatalysts is not free from drawbacks. In addition to the transpeptidase activity, GGTs show a non-negligible hydrolase activity towards both the donor substrate and the newly formed transpeptidation product, affording irreversibly glutamic acid.2
In our ongoing studies on bacterial GGTs, we found that the presence of the lid loop \u2013 a short amino acids sequence covering the active site in most of the known GGTs \u2013 not only affects substrate selection, but also modulates hydrolase/transpeptidase activities.3 Within the TailGluTran Project,4 aimed at the development of mutant GGTs with improved transpeptidase activity, is currently under investigation a mutant enzyme obtained by inserting the sequence of the lid loop on the structure of a GGT naturally lacking it. The mutant enzyme shows promising high transpeptidase activity with respect to wild type counterparts and represents a starting point for further modifications in the search of a suitable biocatalyst intended for preparative purposes
Determination of the Acceleration Region Size in a Loop-structured Solar Flare
In order to study the acceleration and propagation of
bremsstrahlung-producing electrons in solar flares, we analyze the evolution of
the flare loop size with respect to energy at a variety of times. A GOES M3.7
loop-structured flare starting around 23:55 on 2002 April 14 is studied in
detail using \textit{Ramaty High Energy Solar Spectroscopic Imager}
(\textit{RHESSI}) observations. We construct photon and mean-electron-flux maps
in 2-keV energy bins by processing observationally-deduced photon and electron
visibilities, respectively, through several image-processing methods: a
visibility-based forward-fit (FWD) algorithm, a maximum entropy (MEM) procedure
and the uv-smooth (UVS) approach. We estimate the sizes of elongated flares
(i.e., the length and width of flaring loops) by calculating the second
normalized moments of the intensity in any given map. Employing a collisional
model with an extended acceleration region, we fit the loop lengths as a
function of energy in both the photon and electron domains. The resulting
fitting parameters allow us to estimate the extent of the acceleration region
which is between and . Both
forward-fit and uv-smooth algorithms provide substantially similar results with
a systematically better fit in the electron domain.The consistency of the
estimates from these methods provides strong support that the model can
reliably determine geometric parameters of the acceleration region. The
acceleration region is estimated to be a substantial fraction () of
the loop extent, indicating that this dense flaring loop incorporates both
acceleration and transport of electrons, with concurrent thick-target
bremsstrahlung emission.Comment: 8 pages, 5 figures, accepted to Astronomy and Astrophysics journa
Electron-Electron Bremsstrahlung Emission and the Inference of Electron Flux Spectra in Solar Flares
Although both electron-ion and electron-electron bremsstrahlung contribute to
the hard X-ray emission from solar flares, the latter is normally ignored. Such
an omission is not justified at electron (and photon) energies above
keV, and inclusion of the additional electron-electron bremsstrahlung in
general makes the electron spectrum required to produce a given hard X-ray
spectrum steeper at high energies.
Unlike electron-ion bremsstrahlung, electron-electron bremsstrahlung cannot
produce photons of all energies up to the maximum electron energy involved. The
maximum possible photon energy depends on the angle between the direction of
the emitting electron and the emitted photon, and this suggests a diagnostic
for an upper cutoff energy and/or for the degree of beaming of the accelerated
electrons.
We analyze the large event of January 17, 2005 observed by RHESSI and show
that the upward break around 400 keV in the observed hard X-ray spectrum is
naturally accounted for by the inclusion of electron-electron bremsstrahlung.
Indeed, the mean source electron spectrum recovered through a regularized
inversion of the hard X-ray spectrum, using a cross-section that includes both
electron-ion and electron-electron terms, has a relatively constant spectral
index over the range from electron kinetic energy keV to MeV. However, the level of detail discernible in the recovered electron
spectrum is not sufficient to determine whether or not any upper cutoff energy
exists.Comment: 7 pages, 5 figures, submitted to Astrophysical Journa
concordance and time estimation of store and forward mobile teledermatology compared to classical face to face consultation
Smartphones have overcome the limitations of image quality seen in older devices and opened a new field of telemedicine called "mobile teledermatology". Technological advances and the need to reduce health service costs will strongly promote the development of telemedicine. For this reason, we evaluated the concordance be tween store-and-forward mobile teledermatology and the classical face-to-face dermatological visit. We also measured the time taken to submit a teleconsultation using a smartphone. Before conventional face-to-face visit, a final-year resident of the 3-year course for general practitioners collected medical history, took digital images of skin diseases with a smartphone and, measuring the time required to complete this operation, transmitted them to an expert teledermatologist. In 391 patients we obtained a concordance between face-to-face and store-and-forward diagnosis of 91.05% (Cohen Îș coefficient = 0.906). On average only few minutes needs to be added to a no
Synthesis of Ribavirin, Tecadenoson, and Cladribine by enzymatic transglycosylation
Despite the impressive progress in nucleoside chemistry to date, the synthesis of nucleoside analogues is still a challenge. Chemoenzymatic synthesis has been proven to overcome most of the constraints of conventional nucleoside chemistry. A purine nucleoside phosphorylase from Aeromonas hydrophila (AhPNP) has been used herein to catalyze the synthesis of Ribavirin, Tecadenoson, and Cladribine, by a âone-pot, one-enzymeâ transglycosylation, which is the transfer of the carbohydrate moiety from a nucleoside donor to a heterocyclic base. As the sugar donor, 7-methylguanosine iodide and its 2âČ-deoxy counterpart were synthesized and incubated either with the âpurine-likeâ base or the modified purine of the three selected APIs. Good conversions (49-67%) were achieved in all cases under screening conditions. Following this synthetic scheme, 7-methylguanine arabinoside iodide was also prepared with the purpose to synthesize the antiviral Vidarabine by a novel approach. However, in this case, neither the phosphorolysis of the sugar donor, nor the transglycosylation reaction were observed. This study was enlarged to two other ribonucleosides structurally related to Ribavirin and Tecadenoson, namely, Acadesine, or AICAR, and 2-chloro-N6-cyclopentyladenosine, or CCPA. Only the formation of CCPA was observed (52%). This study paves the way for the development of a new synthesis of the target APIs at a preparative scale. Furthermore, the screening herein reported contributes to the collection of new data about the specific substrate requirements of AhPNP
The sub-arcsecond hard X-ray structure of loop footpoints in a solar flare
The newly developed X-ray visibility forward fitting technique is applied to
Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) data of a limb
flare to investigate the energy and height dependence on sizes, shapes, and
position of hard X-ray chromospheric footpoint sources. This provides
information about the electron transport and chromospheric density structure.
The spatial distribution of two footpoint X-ray sources is analyzed using
PIXON, Maximum Entropy Method, CLEAN and visibility forward fit algorithms at
nonthermal energies from to keV. We report, for the first
time, the vertical extents and widths of hard X-ray chromospheric sources
measured as a function of energy for a limb event. Our observations suggest
that both the vertical and horizontal sizes of footpoints are decreasing with
energy. Higher energy emission originates progressively deeper in the
chromosphere consistent with downward flare accelerated streaming electrons.
The ellipticity of the footpoints grows with energy from at keV to at keV. The positions of X-ray emission are in
agreement with an exponential density profile of scale height ~km.
The characteristic size of the hard X-ray footpoint source along the limb is
decreasing with energy suggesting a converging magnetic field in the footpoint.
The vertical sizes of X-ray sources are inconsistent with simple collisional
transport in a single density scale height but can be explained using a
multi-threaded density structure in the chromosphere.Comment: 7 pages, 7 figures, submitted to Ap
Melanoma Screening with Cellular Phones
Background. Mobile teledermatology has recently been shown to be suitable for teledermatology despite limitations in image definition in preliminary studies. The unique aspect of mobile teledermatology is that this system represents a filtering or triage system, allowing a sensitive approach for the management of patients with emergent skin diseases. Methodology/Principal Findings. In this study we investigated the feasibility of teleconsultation using a new generation of cellular phones in pigmented skin lesions. 18 patients were selected consecutively in the Pigmented Skin Lesions Clinic of the Department of Dermatology, Medical University of Graz, Graz (Austria). Clinical and dermoscopic images were acquired using a Sony Ericsson with a built-in two-megapixel camera. Two teleconsultants reviewed the images on a specific web application (http://www.dermahandy.net/default.asp) where images had been uploaded in JPEG format. Compared to the face-to-face diagnoses, the two teleconsultants obtained a score of correct telediagnoses of 89% and of 91.5% reporting the clinical and dermoscopic images, respectively. Conclusions/Significance. The present work is the first study performing mobile teledermoscopy using cellular phones. Mobile teledermatology has the potential to become an easy applicable tool for everyone and a new approach for enhanced self-monitoring for skin cancer screening in the spirit of the eHealth program of the European Commission Information for Society and Media
AntarctiCor: Solar Coronagraph in Antarctica for the ESCAPE Project
The Antarctica solar coronagraph âAntarctiCorâ for the âExtreme Solar Coronagraphy Antarctic Program Experimentâ âESCAPEâ comprises an internally-occulted coronagraph based on the externally-occulted ASPIICS coronagraph for the ESA formation-ïŹying PROBA-3 mission. This paper describes the AntarctiCor design for ground-based observations from the DomeC Antarctica plateau of the polarized broad-band (591 nm ± 5 nm) K-corona and of the narrowband (FWHM = 0.5 nm), polarized emission of the coronal green-line at 530.3 nm. The science goal of these observations is to map the topology and dynamics of the coronal magnetic ïŹeld, addressing coronal heating and space weather questions
- âŠ