97 research outputs found

    10-Hydroxy-2-decenoic Acid, a Major Fatty Acid from Royal Jelly, Inhibits VEGF-induced Angiogenesis in Human Umbilical Vein Endothelial Cells

    Get PDF
    Vascular endothelial growth factor (VEGF) is reported to be a potent pro-angiogenic factor that plays a pivotal role in both physiological and pathological angiogenesis. Royal jelly (RJ) is a honeybee product containing various proteins, sugars, lipids, vitamins and free amino acids. 10-Hydroxy-2-decenoic acid (10HDA), a major fatty acid component of RJ, is known to have various pharmacological effects; its antitumor activity being especially noteworthy. However, the mechanism underlying this effect is unclear. We examined the effect of 10HDA on VEGF-induced proliferation, migration and tube formation in human umbilical vein endothelial cells (HUVECs). Our findings showed that, 10HDA at 20 ĀµM or more significantly inhibited such proliferation, migration and tube formation. Similarly, 10 ĀµM GM6001, a matrix metalloprotease inhibitor, prevented VEGF-induced migration and tube formation. These findings indicate that 10HDA exerts an inhibitory effect on VEGF-induced angiogenesis, partly by inhibiting both cell proliferation and migration. Further experiments will be needed to clarify the detailed mechanism

    Th17 cells and IL-17 receptor signaling are essential for mucosal host defense against oral candidiasis

    Get PDF
    The commensal fungus Candida albicans causes oropharyngeal candidiasis (OPC; thrush) in settings of immunodeficiency. Although disseminated, vaginal, and oral candidiasis are all caused by C. albicans species, host defense against C. albicans varies by anatomical location. T helper 1 (Th1) cells have long been implicated in defense against candidiasis, whereas the role of Th17 cells remains controversial. IL-17 mediates inflammatory pathology in a gastric model of mucosal candidiasis, but is host protective in disseminated disease. Here, we directly compared Th1 and Th17 function in a model of OPC. Th17-deficient (IL-23p19āˆ’/āˆ’) and IL-17Rā€“deficient (IL-17RAāˆ’/āˆ’) mice experienced severe OPC, whereas Th1-deficient (IL-12p35āˆ’/āˆ’) mice showed low fungal burdens and no overt disease. Neutrophil recruitment was impaired in IL-23p19āˆ’/āˆ’ and IL-17RAāˆ’/āˆ’, but not IL-12āˆ’/āˆ’, mice, and TCR-Ī±Ī² cells were more important than TCR-Ī³Ī“ cells. Surprisingly, mice deficient in the Th17 cytokine IL-22 were only mildly susceptible to OPC, indicating that IL-17 rather than IL-22 is vital in defense against oral candidiasis. Gene profiling of oral mucosal tissue showed strong induction of Th17 signature genes, including CXC chemokines and Ī² defensin-3. Saliva from Th17-deficient, but not Th1-deficient, mice exhibited reduced candidacidal activity. Thus, the Th17 lineage, acting largely through IL-17, confers the dominant response to oral candidiasis through neutrophils and antimicrobial factors

    Prototype ATLAS IBL Modules using the FE-I4A Front-End Readout Chip

    Get PDF
    The ATLAS Collaboration will upgrade its semiconductor pixel tracking detector with a new Insertable B-layer (IBL) between the existing pixel detector and the vacuum pipe of the Large Hadron Collider. The extreme operating conditions at this location have necessitated the development of new radiation hard pixel sensor technologies and a new front-end readout chip, called the FE-I4. Planar pixel sensors and 3D pixel sensors have been investigated to equip this new pixel layer, and prototype modules using the FE-I4A have been fabricated and characterized using 120 GeV pions at the CERN SPS and 4 GeV positrons at DESY, before and after module irradiation. Beam test results are presented, including charge collection efficiency, tracking efficiency and charge sharing.Comment: 45 pages, 30 figures, submitted to JINS

    The Protein Kinase C Agonist PEP005 (Ingenol 3-Angelate) in the Treatment of Human Cancer: A Balance between Efficacy and Toxicity

    Get PDF
    The diterpene ester ingenol-3-angelate (referred to as PEP005) is derived from the plant Euphorbia peplus. Crude euphorbia extract causes local toxicity and transient inflammation when applied topically and has been used in the treatment of warts, skin keratoses and skin cancer. PEP005 is a broad range activator of the classical (Ī±, Ī², Ī³) and novel (Ī“, Īµ, Ī·, Īø) protein kinase C isoenzymes. Direct pro-apoptotic effects of this drug have been demonstrated in several malignant cells, including melanoma cell lines and primary human acute myelogenous leukemia cells. At micromolar concentrations required to kill melanoma cells this agent causes PKC-independent secondary necrosis. In contrast, the killing of leukemic cells occurs in the nanomolar range, requires activation of protein kinase C Ī“ (PKCĪ“) and is specifically associated with translocation of PKCĪ“ from the cytoplasm to the nuclear membrane. However, in addition to this pro-apoptotic effect the agent seems to have immunostimulatory effects, including: (i) increased chemokine release by malignant cells; (ii) a general increase in proliferation and cytokine release by activated T cells, including T cells derived from patients with chemotherapy-induced lymphopenia; (iii) local infiltration of neutrophils after topical application with increased antibody-dependent cytotoxicity; and (iv) development of specific anti-cancer immune responses by CD8+ T cells in animal models. Published studies mainly describe effects from in vitro investigations or after topical application of the agent, and careful evaluation of the toxicity after systemic administration is required before the possible use of this agent in the treatment of malignancies other than skin cancers

    t10c12 Conjugated Linoleic Acid Suppresses HER2 Protein and Enhances Apoptosis in SKBr3 Breast Cancer Cells: Possible Role of COX2

    Get PDF
    BACKGROUND: HER2-targeted therapy with the monoclonal antibody trastuzumab (Herceptin) has improved disease-free survival for women diagnosed with HER2-positive breast cancers; however, treatment resistance and disease progression are not uncommon. Current data suggest that resistance to treatment in HER2 cancers may be a consequence of NF-kappaB overexpression and increased COX2-derived prostaglandin E2 (PGE(2)). Conjugated linoleic acid (CLA) has been shown to have anti-tumor properties and to inhibit NF-kappaB activity and COX2. METHODS: In this study, HER2-overexpressing SKBr3 breast cancer cells were treated with t10c12 CLA. Protein expression of the HER2 receptor, nuclear NF-kappaB p65, and total and phosphorylated IkappaB were examined by western blot and immunofluorescence. PGE(2) levels were determined by ELISA. Proliferation was measured by metabolism of 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT), and apoptosis was measured by FITC-conjugated Annexin V staining and flow cytometry. RESULTS/CONCLUSIONS: We observed a significant decrease in HER2 protein expression on western blot following treatment with 40 and 80 microM t10c12 CLA (p<0.01 and 0.001, respectively) and loss of HER2 protein in cells using immunoflourescence that was most pronounced at 80 microM. Protein levels of nuclear NF-kappaB p65 were also significantly reduced at the 80 microM dose. This was accompanied by a significant decrease in PGE(2) levels (p = 0.05). Pretreatment with t10c12 CLA significantly enhanced TNFalpha-induced apoptosis and the anti-proliferative action of trastuzumab (p = 0.05 and 0.001, respectively). These data add to previous reports of an anti-tumor effect of t10c12 CLA and suggest an effect on the HER2 oncogene that may be through CLA mediated downregulation of COX2-derived PGE(2)

    Spectrin-based skeleton as an actor in cell signaling

    Get PDF
    This review focuses on the recent advances in functions of spectrins in non-erythroid cells. We discuss new data concerning the commonly known role of the spectrin-based skeleton in control of membrane organization, stability and shape, and tethering protein mosaics to the cellular motors and to all major filament systems. Particular effort has been undertaken to highlight recent advances linking spectrin to cell signaling phenomena and its participation in signal transduction pathways in many cell types

    ICF, An Immunodeficiency Syndrome: DNA Methyltransferase 3B Involvement, Chromosome Anomalies, and Gene Dysregulation

    Get PDF
    The immunodeficiency, centromeric region instability, and facial anomalies syndrome (ICF) is the only disease known to result from a mutated DNA methyltransferase gene, namely, DNMT3B. Characteristic of this recessive disease are decreases in serum immunoglobulins despite the presence of B cells and, in the juxtacentromeric heterochromatin of chromosomes 1 and 16, chromatin decondensation, distinctive rearrangements, and satellite DNA hypomethylation. Although DNMT3B is involved in specific associations with histone deacetylases, HP1, other DNMTs, chromatin remodelling proteins, condensin, and other nuclear proteins, it is probably the partial loss of catalytic activity that is responsible for the disease. In microarray experiments and real-time RT-PCR assays, we observed significant differences in RNA levels from ICF vs. control lymphoblasts for pro- and anti-apoptotic genes (BCL2L10, CASP1, and PTPN13); nitrous oxide, carbon monoxide, NF-ĪŗB, and TNFa signalling pathway genes (PRKCH, GUCY1A3, GUCY1B3, MAPK13; HMOX1, and MAP4K4); and transcription control genes (NR2F2 and SMARCA2). This gene dysregulation could contribute to the immunodeficiency and other symptoms of ICF and might result from the limited losses of DNA methylation although ICF-related promoter hypomethylation was not observed for six of the above examined genes. We propose that hypomethylation of satellite 2at1qh and 16qh might provoke this dysregulation gene expression by trans effects from altered sequestration of transcription factors, changes in nuclear architecture, or expression of noncoding RNAs
    • ā€¦
    corecore