87 research outputs found

    Klippel-Trenaunay syndrome (KTS): A report of two patients and review of literature

    Get PDF
    AbstractKlippel-Trenaunay syndrome (KTS) is an uncommon congenital condition, resulting in vascular malformations affecting capillary, venous, and lymphatic systems and bone and/or soft tissue hypertrophy. Magnetic Resonance Angiography (MRA) may be useful in assessing the severity of the disease and for treatment planning. We present two cases of two white men with the typical clinical presentation of Klippel-Trenaunay syndrome i.e. vascular malformations (capillary, venous and lymphatic) and localized bone and/or soft tissues hypertrophy. Splenic hemangiomas were evidenced in both patients and MRA was helpful in assessing and delineating the abnormal venous drainage system. KTS is a complex disorder whose true prevalence and etiology are still unknown. In most cases the emblematic clinical manifestation consisting in vascular malformations and extremity overgrowth is represented. KTS may be associated with several different conditions including scoliosis and splenic hemangiomas. The presence of the lateral marginal vein (LMV) is pathognomonic. Imaging is fundamental in confirming the diagnosis and for therapeutic strategies. An effective treatment does not exist to date and a multidisciplinary approach is usually required to prevent complications

    A Dedicated Tool for Presurgical Mapping of Brain Tumors and Mixed-Reality Navigation During Neurosurgery

    Get PDF
    Brain tumor surgery requires a delicate tradeoff between complete removal of neoplastic tissue while minimizing loss of brain function. Functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) have emerged as valuable tools for non-invasive assessment of human brain function and are now used to determine brain regions that should be spared to prevent functional impairment after surgery. However, image analysis requires different software packages, mainly developed for research purposes and often difficult to use in a clinical setting, preventing large-scale diffusion of presurgical mapping. We developed a specialized software able to implement an automatic analysis of multimodal MRI presurgical mapping in a single application and to transfer the results to the neuronavigator. Moreover, the imaging results are integrated in a commercially available wearable device using an optimized mixed-reality approach, automatically anchoring 3-dimensional holograms obtained from MRI with the physical head of the patient. This will allow the surgeon to virtually explore deeper tissue layers highlighting critical brain structures that need to be preserved, while retaining the natural oculo-manual coordination. The enhanced ergonomics of this procedure will significantly improve accuracy and safety of the surgery, with large expected benefits for health care systems and related industrial investors

    Ultrasound imaging of the axilla

    Get PDF
    : Axilla is a pyramidal-in-shape "virtual cavity" housing multiple anatomical structures and connecting the upper limb with the trunk. To the best of our knowledge, in the pertinent literature, a detailed sonographic protocol to comprehensively assess the axillary region in daily practice is lacking. In this sense, the authors have briefly described the anatomical architecture of the axilla-also using cadaveric specimens-to propose a layer-by-layer sonographic approach to this challenging district. The most common sonographic pathological findings-for each and every anatomical compartment of the axilla-have been accurately reported and compared with the corresponding histopathological features. This ultrasound approach could be considered a ready-to-use educational guidance for the assessment of the axillary region. CRITICAL RELEVANCE STATEMENT: Axilla is a pyramidal-in-shape "virtual cavity" housing multiple anatomical structures and connecting the upper limb with the trunk. The aim of this review article was to describe the anatomical architecture of the axilla, also using cadaveric specimens, in order to propose a layer-by-layer sonographic approach to this challenging district

    Functional Electrical Stimulation: A Possible Strategy to Improve Muscle Function in Central Core Disease?

    Get PDF
    Central Core Disease (CCD) is a congenital myopathy characterized by presence of amorphous central areas (or cores) lacking glycolytic/oxidative enzymes and mitochondria in skeletal muscle fibers. Most CCD families are linked to mutations in ryanodine receptor type-1 (RYR1), the gene encoding for the sarcoplasmic reticulum (SR) Ca2+ release channel of skeletal muscle. As no treatments are available for CCD, currently management of patients is essentially based on a physiotherapic approaches. Functional electrical stimulation (FES) is a technique used to deliver low energy electrical impulses to artificially stimulate selected skeletal muscle groups. Here we tested the efficacy of FES in counteracting muscle loss and improve function in the lower extremities of a 55-year-old female patient which was diagnosed with CCD at the age of 44. Genetic screening of the RyR1 gene identified a missense mutation (c.7354C>T) in exon 46 resulting in an amino acid substitution (p.R2452W) and a duplication (c.12853_12864dup12) in exon 91. The patient was treated with FES for 26 months and subjected before, during, and after training to a series of functional and structural assessments: measurement of maximum isometric force of leg extensor muscles, magnetic resonance imaging, a complete set of functional tests to assess mobility in activities of daily living, and analysis of muscle biopsies by histology and electron microscopy. All results point to an improvement in muscle structure and function induced by FES suggesting that this approach could be considered as an additional supportive measure to maintain/improve muscle function (and possibly reduce muscle loss) in CCD patients

    Direct Involvement of Cranial Nerve V at Diagnosis in Patients With Diffuse Intrinsic Pontine Glioma: A Potential Magnetic Resonance Predictor of Short-Term Survival

    Get PDF
    Background: Diffuse intrinsic pontine glioma (DIPG) has a dismal prognosis. Magnetic resonance imaging (MRI) remains the gold standard for non-invasive DIPG diagnosis. MRI features have been tested as surrogate biomarkers. We investigated the direct involvement of cranial nerve V (CN V) in DIPG at diagnosis and its utility as predictor of poor overall survival.Materials and Methods: We examined MRI scans of 35 consecutive patients with radiological diagnosis of DIPG. Direct involvement of CN V was assessed on the diagnostic scans. Differences in overall survival (OS) and time to progression (TTP) were analyzed for involvement of CN V, sex, age, tumor size, ring enhancement, and treatment regimen. Correlations between involvement of CN V and disease dissemination, magnet strength and slice thickness were analyzed. Statistical analyses included Kaplan-Meier curves, log-rank test and Spearman's Rho.Results: After excluding six long-term survivors, 29 patients were examined (15 M, 14 F). Four patients presented direct involvement of CN V. Histological data were available in 12 patients. Median OS was 11 months (range 3–23 months). Significant differences in OS were found for direct involvement of CN V (median OS: 7 months, 95% CI 1.1–12.9 months for involvement of CN V vs. 13 months, 95% CI 10.2–15.7 for lack of involvement of CN V, respectively, p < 0.049). Significant differences in TTP were found for the two treatment regimens (median TTP: 4 months, 95% CI 2.6–5.3 vs. 7 months, 95% CI 5.9–8.1, respectively, p < 0.027). No significant correlation was found between involvement of CN V and magnet strength or slice thickness (r = −0.201; p = NS). A trend toward positive correlation was found between direct involvement of CN V at diagnosis and dissemination of disease at follow-up (r = 0.347; p < 0.065).Conclusions: In our cohort, direct involvement of CN V correlated with poor prognosis. Based on our data, we suggest that in DIPG direct involvement of CN V should be routinely evaluated on diagnostic scans

    Role of prenatal magnetic resonance imaging in fetuses with isolated mild or moderate ventriculomegaly in the era of neurosonography: international multicenter study

    Get PDF
    Objectives To assess the role of fetal magnetic resonance imaging (MRI) in detecting associated anomalies in fetuses presenting with mild or moderate isolated ventriculomegaly (VM) undergoing multiplanar ultrasound evaluation of the fetal brain. Methods This was a multicenter, retrospective, cohort study involving 15 referral fetal medicine centers in Italy, the UK and Spain. Inclusion criteria were fetuses affected by isolated mild (ventricular atrial diameter, 10.0–11.9 mm) or moderate (ventricular atrial diameter, 12.0–14.9 mm) VM on ultrasound, defined as VM with normal karyotype and no other additional central nervous system (CNS) or extra‐CNS anomalies on ultrasound, undergoing detailed assessment of the fetal brain using a multiplanar approach as suggested by the International Society of Ultrasound in Obstetrics and Gynecology guidelines for the fetal neurosonogram, followed by fetal MRI. The primary outcome of the study was to report the incidence of additional CNS anomalies detected exclusively on prenatal MRI and missed on ultrasound, while the secondary aim was to estimate the incidence of additional anomalies detected exclusively after birth and missed on prenatal imaging (ultrasound and MRI). Subgroup analysis according to gestational age at MRI (< 24 vs ≄ 24 weeks), laterality of VM (unilateral vs bilateral) and severity of dilatation (mild vs moderate VM) were also performed. Results Five hundred and fifty‐six fetuses with a prenatal diagnosis of isolated mild or moderate VM on ultrasound were included in the analysis. Additional structural anomalies were detected on prenatal MRI and missed on ultrasound in 5.4% (95% CI, 3.8–7.6%) of cases. When considering the type of anomaly, supratentorial intracranial hemorrhage was detected on MRI in 26.7% of fetuses, while polymicrogyria and lissencephaly were detected in 20.0% and 13.3% of cases, respectively. Hypoplasia of the corpus callosum was detected on MRI in 6.7% of cases, while dysgenesis was detected in 3.3%. Fetuses with an associated anomaly detected only on MRI were more likely to have moderate than mild VM (60.0% vs 17.7%; P < 0.001), while there was no significant difference in the proportion of cases with bilateral VM between the two groups (P = 0.2). Logistic regression analysis showed that lower maternal body mass index (adjusted odds ratio (aOR), 0.85 (95% CI, 0.7–0.99); P = 0.030), the presence of moderate VM (aOR, 5.8 (95% CI, 2.6–13.4); P < 0.001) and gestational age at MRI ≄ 24 weeks (aOR, 4.1 (95% CI, 1.1–15.3); P = 0.038) were associated independently with the probability of detecting an associated anomaly on MRI. Associated anomalies were detected exclusively at birth and missed on prenatal imaging in 3.8% of cases. Conclusions The incidence of an associated fetal anomaly missed on ultrasound and detected only on fetal MRI in fetuses with isolated mild or moderate VM undergoing neurosonography is lower than that reported previously. The large majority of these anomalies are difficult to detect on ultrasound. The findings from this study support the practice of MRI assessment in every fetus with a prenatal diagnosis of VM, although parents can be reassured of the low risk of an associated anomaly when VM is isolated on neurosonography

    Capsular warning syndrome mimicking a jacksonian sensory march

    No full text
    A 57-year-old man, operated eight years before for a left frontal falx meningioma, presented with short lasting, stereotyped episodes of paresthesias ascending from the right foot to the hand. A diagnosis of somatosensory seizures with jacksonian march was made. The patient was given antiepilectics but 5 days later, a few hours after another paresthesic episodes, he developed right hemiplegia, hemianesthesia and dysartria due to an infarct of left capsular posterior limb. We deem that in this patient the paresthesic episodes were more likely an expression of a capsular warning syndrome than of parietal epilepsy because of the frontal localization of the surgical lesion, the absence of motor components in all episodes, the negativity of repeated EEG, and the lack of recurrences after stroke. In capsular warning syndrome sensory symptoms mimicking a jacksonian march can be due to ischemic depolarization progressively recruiting the somatotopically arranged sensory fibers in the posterior capsular limb

    Unusual ipsilateral hyperkinetic automatisms in SMA seizures.

    Get PDF
    PURPOSE: To describe repetitive movements of the right arm possibly originating from the ipsilateral SMA area in two drug-resistant epileptic patients. METHODS: Two epileptic patients (one female, one male, 35 and 36 years old, respectively) were submitted to pre-surgical evaluation including history, neurological examination, long-term video-EEG monitoring, interictal and ictal SPET, MRI and fMRI, neuropsychological assessment. Invasive recordings (stereoelectroencephalography) were also performed. RESULTS: In both patients ictal semiology was characterized by very stereotyped repetitive right arm movements, i.e. tapping towards the thorax (movement rate of 6-7 Hz and 3-4 Hz for the two subjects, respectively). Seizures in the first patient, whose epilepsy was cryptogenetic, originated from the right pre-SMA area, which was surgically removed. She is seizure free 2 years after the operation. In the second patient, in whom a right pre-frontal post-abscess porencephaly was disclosed, the epileptogenic zone included the lesion and surrounding areas, while the SMA area was involved less consistently. CONCLUSIONS: Even if, according to literature, SMA epilepsy is predominantly characterized by postural manifestations, ipsilateral repetitive movements could be a relevant sign in this kind of epilepsy, as showed in our first patient. The presence of similar semiology in the second patient, might suggest that the symptomatogenic zone involved SMA area

    Interaction of the salience network, ventral attention network, dorsal attention network and default mode network in neonates and early development of the bottom-up attention system.

    No full text
    The salience network (SN), ventral attention network (VAN), dorsal attention network (DAN) and default mode network (DMN) have shown significant interactions and overlapping functions in bottom-up and top-down mechanisms of attention. In the present study, we tested if the SN, VAN, DAN and DMN connectivity can infer the gestational age (GA) at birth in a study group of 88 healthy neonates, scanned at 40 weeks of post-menstrual age, and with GA at birth ranging from 28 to 40 weeks. We also ascertained whether the connectivity within each of the SN, VAN, DAN and DMN was able to infer the average functional connectivity of the others. The ability to infer GA at birth or another network's connectivity was evaluated using a multivariate data-driven framework. The VAN, DAN and the DMN inferred the GA at birth (p < 0.05). The SN, DMN and VAN were able to infer the average connectivity of the other networks (p < 0.05). Mediation analysis between VAN's and DAN's inference on GA at birth found reciprocal transmittance of change with GA at birth of VAN's and DAN's connectivity (p < 0.05). Our findings suggest that the VAN has a prominent role in bottom-up salience detection in early infancy and that the role of the VAN and the SN may overlap in the bottom-up control of attention

    Modifications of default-mode network connectivity in patients with cerebral glioma.

    Get PDF
    PURPOSE: The aim of the study was to evaluate connectivity modifications in the Default Mode Network (DMN) in patients with cerebral glioma, and to correlate these modifications to tumor characteristics. METHODS: Twenty-four patients with a left-hemisphere cerebral tumor (14 grade II and 10 grade IV gliomas) and 14 healthy age-matched right-hand volunteers were enrolled in the study. Subjects underwent fMRI while performing language tasks for presurgical mapping. Data was analyzed with independent component analysis in order to identify the DMN. DMN group maps were produced by random-effect analysis (p<0.001, FDR-corrected). An analysis of variance across the three groups (p<0.05) and post-hoc t-test contrasts between pairs of groups were calculated (p<0.05, FDR-corrected). RESULTS: All three groups showed typical DMN areas. However, reduced DMN connectivity was detected in tumor patients with respect to controls. A significantly increased and reduced integration of DMN areas was observed in the hippocampal and prefrontal regions, respectively. Modifications were closely related to tumor grading. Moreover, the DMN lateralized to the hemisphere contralateral to tumor in the low-grade, but not in the high-grade tumor patients. CONCLUSION: Modifications of DMN connectivity were induced by gliomas and differed for high and low grade tumors
    • 

    corecore