36 research outputs found

    International longitudinal registry of patients with atrial fibrillation and treated with rivaroxaban: RIVaroxaban Evaluation in Real life setting (RIVER)

    Get PDF
    Background Real-world data on non-vitamin K oral anticoagulants (NOACs) are essential in determining whether evidence from randomised controlled clinical trials translate into meaningful clinical benefits for patients in everyday practice. RIVER (RIVaroxaban Evaluation in Real life setting) is an ongoing international, prospective registry of patients with newly diagnosed non-valvular atrial fibrillation (NVAF) and at least one investigator-determined risk factor for stroke who received rivaroxaban as an initial treatment for the prevention of thromboembolic stroke. The aim of this paper is to describe the design of the RIVER registry and baseline characteristics of patients with newly diagnosed NVAF who received rivaroxaban as an initial treatment. Methods and results Between January 2014 and June 2017, RIVER investigators recruited 5072 patients at 309 centres in 17 countries. The aim was to enroll consecutive patients at sites where rivaroxaban was already routinely prescribed for stroke prevention. Each patient is being followed up prospectively for a minimum of 2-years. The registry will capture data on the rate and nature of all thromboembolic events (stroke / systemic embolism), bleeding complications, all-cause mortality and other major cardiovascular events as they occur. Data quality is assured through a combination of remote electronic monitoring and onsite monitoring (including source data verification in 10% of cases). Patients were mostly enrolled by cardiologists (n = 3776, 74.6%), by internal medicine specialists 14.2% (n = 718) and by primary care/general practice physicians 8.2% (n = 417). The mean (SD) age of the population was 69.5 (11.0) years, 44.3% were women. Mean (SD) CHADS2 score was 1.9 (1.2) and CHA2DS2-VASc scores was 3.2 (1.6). Almost all patients (98.5%) were prescribed with once daily dose of rivaroxaban, most commonly 20 mg (76.5%) and 15 mg (20.0%) as their initial treatment; 17.9% of patients received concomitant antiplatelet therapy. Most patients enrolled in RIVER met the recommended threshold for AC therapy (86.6% for 2012 ESC Guidelines, and 79.8% of patients according to 2016 ESC Guidelines). Conclusions The RIVER prospective registry will expand our knowledge of how rivaroxaban is prescribed in everyday practice and whether evidence from clinical trials can be translated to the broader cross-section of patients in the real world

    Parasympathetic Control of the Heart. II. A Novel Interganglionic Intrinsic Cardiac Circuit Mediates Neural Control of Heart Rate

    No full text
    Intracardiac pathways mediating the parasympathetic control of various cardiac functions are incompletely understood. Several intracardiac ganglia have been demonstrated to potently influence cardiac rate [the sinoatrial (SA) ganglion], atrioventricular (AV) conduction (the AV ganglion), or left ventricular contractility (the cranioventricular ganglion). However, there are numerous ganglia found throughout the heart whose functions are poorly characterized. One such ganglion, the posterior atrial (PA) ganglion, is found in a fat pad on the rostral dorsal surface of the right atrium. We have investigated the potential impact of this ganglion on cardiac rate and AV conduction. We report that microinjections of a ganglionic blocker into the PA ganglion significantly attenuates the negative chronotropic effects of vagal stimulation without significantly influencing negative dromotropic effects. Because prior evidence indicates that the PA ganglion does not project to the SA node, we neuroanatomically tested the hypothesis that the PA ganglion mediates its effect on cardiac rate through an interganglionic projection to the SA ganglion. Subsequent to micro-injections of the retrograde tracer fast blue into the SA ganglion, \u3e70% of the retrogradely labeled neurons found within five intracardiac ganglia throughout the heart were observed in the PA ganglion. The neuroanatomic data further indicate that intraganglionic neuronal circuits are found within the SA ganglion. The present data support the hypothesis that two interacting cardiac centers, i.e., the SA and PA ganglia, mediate the peripheral parasympathetic control of cardiac rate. These data further support the emerging concept of an intrinsic cardiac nervous system

    Parasympathetic control of the heart. III. Neuropeptide Y-immunoreactive nerve terminals synapse on three populations of negative chronotropic vagal preganglionic neurons

    No full text
    The vagal postganglionic control of cardiac rate is mediated by two intracardiac ganglia, i.e., the sinoatrial (SA) and posterior atrial (PA) ganglia. Nothing is known about the vagal preganglionic neurons (VPNs) that innervate the PA ganglion or about the neurochemical anatomy of central afferents that innervate these VPNs. These issues were examined using light microscopic retrograde labeling methods and dual-labeling electron microscopic histochemical and immunocytochemical methods. VPNs projecting to the PA ganglion are found in a narrow column exclusively in the ventrolateral nucleus ambiguus (NA-VL). These neurons are relatively large (37.6 ± 2.7 μm by 21.3 ± 3.4 μm) with abundant cytoplasm and intracellular organelles, rare somatic and dendritic spines, round uninvaginated nuclei, and myelinated axons. Previous physiological data indicated that microinjections of neuropeptide Y (NPY) into the NA-VL cause negative chronotropic effects. The present morphological data demonstrate that NPY-immunoreactive nerve terminals formed 18 ± 4% of the axodendritic or axosomatic synapses and close appositions on VPNs projecting to the PA ganglion. Three approximately equal populations of VPNs in the NA-VL were retrogradely labeled from the SA and PA ganglia. One population each projects to the SA ganglion, the PA ganglion, or to both the SA and PA ganglia. Therefore, there are both shared and independent pathways involved in the vagal preganglionic controls of cardiac rate. These data are consistent with the hypothesis that the central and peripheral parasympathetic controls of cardiac rate are coordinated by multiple potentially redundant and/or interacting pathways and mechanisms

    Parasympathetic Control of the Heart. III. Neuropeptide Y-Immunoreactive Nerve Terminals Synapse on Three Populations of Negative Chronotropic Vagal Preganglionic Neurons

    No full text
    The vagal postganglionic control of cardiac rate is mediated by two intracardiac ganglia, i.e., the sinoatrial (SA) and posterior atrial (PA) ganglia. Nothing is known about the vagal preganglionic neurons (VPNs) that innervate the PA ganglion or about the neurochemical anatomy of central afferents that innervate these VPNs. These issues were examined using light microscopic retrograde labeling methods and dual-labeling electron microscopic histochemical and immunocytochemical methods. VPNs projecting to the PA ganglion are found in a narrow column exclusively in the ventrolateral nucleus ambiguus (NA-VL). These neurons are relatively large (37.6 ± 2.7 μm by 21.3 ± 3.4 μm) with abundant cytoplasm and intracellular organelles, rare somatic and dendritic spines, round uninvaginated nuclei, and myelinated axons. Previous physiological data indicated that microinjections of neuropeptide Y (NPY) into the NA-VL cause negative chronotropic effects. The present morphological data demonstrate that NPY-immunoreactive nerve terminals formed 18 ± 4% of the axodendritic or axosomatic synapses and close appositions on VPNs projecting to the PA ganglion. Three approximately equal populations of VPNs in the NA-VL were retrogradely labeled from the SA and PA ganglia. One population each projects to the SA ganglion, the PA ganglion, or to both the SA and PA ganglia. Therefore, there are both shared and independent pathways involved in the vagal preganglionic controls of cardiac rate. These data are consistent with the hypothesis that the central and peripheral parasympathetic controls of cardiac rate are coordinated by multiple potentially redundant and/or interacting pathways and mechanisms
    corecore