919 research outputs found

    X-ray absorption study of Ti-activated sodium aluminum hydride

    Full text link
    Ti K-edge x-ray absorption near edge spectroscopy (XANES) was used to explore the Ti valence and coordination in Ti-activated sodium alanate. An empirical relationship was established between the Ti valence and the Ti K-edge onset based on a set of standards. This relationship was used to estimate oxidation states of the titanium catalyst in 2 mol% and 4 mol% Ti-doped NaAlH4. These results demonstrate that the formal titanium valence is zero in doped sodium alanate and nearly invariant during hydrogen cycling. A qualitative comparison of the edge fine structure suggests that the Ti is present on the surface in the form of amorphous TiAl3.Comment: 3 pages, 4 figures, submitted to Appl. Phys. Let

    Improved Current Densities in MgB2 By Liquid-Assisted Sintering

    Full text link
    Polycrystalline MgB2 samples with GaN additions were prepared by reaction of Mg, B, and GaN powders. The presence of Ga leads to a low melting eutectic phase which allowed liquid phase sintering and produces plate-like grains. For low-level GaN additions (5% at. % or less), the critical transition temperature, Tc, remained unchanged and in 1T magnetic field, the critical current density, Jc was enhanced by a factor of 2 and 10, for temperatures of \~5K and 20K, respectively. The values obtained are approaching those of hot isostatically pressed samples.Comment: 12 pages, 1 table, 4 figures, accepted in Applied Physics Letter

    Structure and giant magnetoresistance of granular Co-Cu nanolayers prepared by cross-beam PLD

    Get PDF
    A series of Co_xCu_{100-x} (x = 0, 40...75, 100) layers with thicknesses in-between 13 nm and 55 nm were prepared on silicon substrates using cross-beam pulsed laser deposition. Wide-angle X-ray diffraction (WAXRD), transmission electron microscopy (TEM) and electrical transport measurements revealed a structure consisting of decomposed cobalt and copper grains with grain sizes of about 10 nm. The influence of cobalt content and layer thickness on the grain size is discussed. Electron diffraction (ED) indicates the presence of an intermetallic Co-Cu phase of Cu3Au structure-type. Thermal treatment at temperatures between 525 K and 750 K results in the progressive decomposition of Co and Cu, with an increase of the grain sizes up to about 100 nm. This is tunable by controlling the temperature and duration of the anneal, and is directly observable in WAXRD patterns and TEM images. A careful analysis of grain size and the coherence length of the radiation used allows for an accurate interpretation of the X-ray diffraction patterns, by taking into account coherent and non-coherent scattering. The alloy films show a giant magnetoresistance of 1...2.3 % with the maximum obtained after annealing at around 725 K.Comment: 9 pages, 9 figure

    Lattice diffusion and surface segregation of B during growth of SiGe heterostructures by molecular beam epitaxy: effect of Ge concentration and biaxial stress

    Full text link
    Si1-xGex/Si1-yGey/Si(100) heterostructures grown by Molecular Beam Epitaxy (MBE) were used in order to study B surface segregation during growth and B lattice diffusion. Ge concentration and stress effects were separated. Analysis of B segregation during growth shows that: i) for layers in epitaxy on (100)Si), B segregation decreases with increasing Ge concentration, i.e. with increased compressive stress, ii) for unstressed layers, B segregation increases with Ge concentration, iii) at constant Ge concentration, B segregation increases for layers in tension and decreases for layers in compression. The contrasting behaviors observed as a function of Ge concentration in compressively stressed and unstressed layers can be explained by an increase of the equilibrium segregation driving force induced by Ge additions and an increase of near-surface diffusion in compressively stressed layers. Analysis of lattice diffusion shows that: i) in unstressed layers, B lattice diffusion coefficient decreases with increasing Ge concentration, ii) at constant Ge concentration, the diffusion coefficient of B decreases with compressive biaxial stress and increases with tensile biaxial stress, iii) the volume of activation of B diffusion () is positive for biaxial stress while it is negative in the case of hydrostatic pressure. This confirms that under a biaxial stress the activation volume is reduced to the relaxation volume

    PHASE TRANSFORMATIONS IN THE ACTINIDES.

    Get PDF

    Structure and magnetism of self-organized Ge(1-x)Mn(x) nano-columns

    Get PDF
    We report on the structural and magnetic properties of thin Ge(1-x)Mn(x)films grown by molecular beam epitaxy (MBE) on Ge(001) substrates at temperatures (Tg) ranging from 80deg C to 200deg C, with average Mn contents between 1 % and 11 %. Their crystalline structure, morphology and composition have been investigated by transmission electron microscopy (TEM), electron energy loss spectroscopy and x-ray diffraction. In the whole range of growth temperatures and Mn concentrations, we observed the formation of manganese rich nanostructures embedded in a nearly pure germanium matrix. Growth temperature mostly determines the structural properties of Mn-rich nanostructures. For low growth temperatures (below 120deg C), we evidenced a two-dimensional spinodal decomposition resulting in the formation of vertical one-dimensional nanostructures (nanocolumns). Moreover we show in this paper the influence of growth parameters (Tg and Mn content) on this decomposition i.e. on nanocolumns size and density. For temperatures higher than 180deg C, we observed the formation of Ge3Mn5 clusters. For intermediate growth temperatures nanocolumns and nanoclusters coexist. Combining high resolution TEM and superconducting quantum interference device magnetometry, we could evidence at least four different magnetic phases in Ge(1-x)Mn(x) films: (i) paramagnetic diluted Mn atoms in the germanium matrix, (ii) superparamagnetic and ferromagnetic low-Tc nanocolumns (120 K 400 K) and (iv) Ge3Mn5 clusters.Comment: 10 pages 2 colonnes revTex formatte

    Atomic scale investigation of Cr precipitation in copper

    Full text link
    The early stage of the chromium precipitation in copper was analyzed at the atomic scale by Atom Probe Tomography (APT). Quantitative data about the precipitate size, 3D shape, density, composition and volume fraction were obtained in a Cu-1Cr-0.1Zr (wt.%) commercial alloy aged at 713K. Surprisingly, nanoscaled precipitates exhibit various shapes (spherical, plates and ellipsoid) and contain a large amount of Cu (up to 50%), in contradiction with the equilibrium Cu-Cr phase diagram. APT data also show that some impurities (Fe) may segregate along Cu/Cr interfaces. The concomitant evolution of the precipitate shape and composition as a function of the aging time is discussed. A special emphasis is given on the competition between interfacial and elastic energy and on the role of Fe segregation

    Hybridization Mechanism for Cohesion of Cd-based Quasicrystals

    Full text link
    Cohesion mechanism of cubic approximant crystals of newly discovered binary quasicrystals, Cd6_6M (M=Yb and Ca), are studied theoretically. It is found that stabilization due to alloying is obtained if M is an element with low-lying unoccupied dd states. This leads to conclusion that the cohesion of the Cd-based compounds is due to the hybridization of the dd states of Yb and Ca with a wide spsp band. %unlike known stable quasicrystals without transition elements %such as Al-Li-Cu and Zn-Mg-RE (RE:rare earth). Although a diameter of the Fermi sphere coincides with the strong Bragg peaks for Cd-Yb and Cd-Ca, the Hume-Rothery mechanism does not play a principal role in the stability because neither distinct pseudogap nor stabilization due to alloying is obtained for isostructural Cd-Mg. In addition to the electronic origin, matching of the atomic size is very crucial for the quasicrystal formation of the Cd-based compounds. It is suggested that the glue atoms, which do not participate in the icosahedral cluster, play an important role in stabilization of the compound.Comment: 4 pages, 2 figure

    Structural and magnetic properties of CoPt mixed clusters

    Get PDF
    In this present work, we report a structural and magnetic study of mixed Co58Pt42 clusters. MgO, Nb and Si matrix can be used to embed clusters, avoiding any magnetic interactions between particles. Transmission Electron Microscopy (TEM) observations show that Co58Pt42 supported isolated clusters are about 2nm in diameter and crystallized in the A1 fcc chemically disordered phase. Grazing Incidence Small Angle X-ray Scattering (GISAXS) and Grazing Incidence Wide Angle X-ray Scattering (GIWAXS) reveal that buried clusters conserve these properties, interaction with matrix atoms being limited to their first atomic layers. Considering that 60% of particle atoms are located at surface, this interactions leads to a drastic change in magnetic properties which were investigated with conventional magnetometry and X-Ray Magnetic Circular Dichro\"{i}sm (XMCD). Magnetization and blocking temperature are weaker for clusters embedded in Nb than in MgO, and totally vanish in silicon as silicides are formed. Magnetic volume of clusters embedded in MgO is close to the crystallized volume determined by GIWAXS experiments. Cluster can be seen as a pure ferromagnetic CoPt crystallized core surrounded by a cluster-matrix mixed shell. The outer shell plays a predominant role in magnetic properties, especially for clusters embedded in niobium which have a blocking temperature 3 times smaller than clusters embedded in MgO
    • …
    corecore