89 research outputs found

    The Story of SPATA2 (Spermatogenesis-Associated Protein 2): From Sertoli Cells to Pancreatic Beta-Cells

    Get PDF
    In an attempt to isolate new spermatogenesis-associated genes, pd1 was initially identified and cloned as a novel human cDNA sequence from testis cDNA library. The novel gene was submitted to GenBank under accession n° U28164 in 1996. PD1 expression was demonstrated at the Sertoli cell level with a production which appeared to be under the influence of neighbouring spermatogenic cells. The rat orthologue of human pd1 was further cloned and, according to the Gene Nomenclature Committee, was renamed spata2 (spermatogenesis-associated protein 2) gene on the basis of its FSH-dependent up-regulation and developmental expression. The analysis of the human and rat cDNA sequences disclosed an open reading frame for a protein of 520 and 511 amino acids respectively, with an overall identity of 85%. Subsequently, a zebrafish orthologue of the human spata2 gene was identified. The consensus open reading frame (1650 bp) encodes a polypeptide of 550 amino acids, which shares 37% identity with the human spata2. By means of whole-mount in situ hybridisation it has been shown that spata2 transcripts are maternally derived and become strongly localised in the central nervous system at early developmental stages. At the same time, RT-PCR analysis demonstrated that several adult zebrafish tissues expressed high level of spata2 mRNA providing evidence that this gene may have a broader function than previously described. More recently, novel findings have highlighted a potential role of spata2 during pancreatic development and β-cell proliferation. In this review we will discuss spata2 gene expression and regulation as well as focus on novel evidence, which suggests a role for this protein in pancreatic β-cell function

    Heparanase: A Multitasking Protein Involved in Extracellular Matrix (ECM) Remodeling and Intracellular Events

    Get PDF
    Heparanase (HPSE) has been defined as a multitasking protein that exhibits a peculiar enzymatic activity towards HS chains but which simultaneously performs other non-enzymatic functions. Through its enzymatic activity, HPSE catalyzes the cutting of the side chains of heparan sulfate (HS) proteoglycans, thus contributing to the remodeling of the extracellular matrix and of the basal membranes. Furthermore, thanks to this activity, HPSE also promotes the release and diffusion of various HS-linked molecules like growth factors, cytokines and enzymes. In addition to being an enzyme, HPSE has been shown to possess the ability to trigger different signaling pathways by interacting with transmembrane proteins. In normal tissue and in physiological conditions, HPSE exhibits only low levels of expression restricted only to keratinocytes, trophoblast, platelets and mast cells and leukocytes. On the contrary, in pathological conditions, such as in tumor progression and metastasis, inflammation and fibrosis, it is overexpressed. With this brief review, we intend to provide an update on the current knowledge about the different role of HPSE protein exerted by its enzymatic and non-enzymatic activity

    Heparanase and macrophage interplay in the onset of liver fibrosis

    Get PDF
    Abstract The heparan sulfate endoglycosidase heparanase (HPSE) is involved in tumor growth, chronic inflammation and fibrosis. Since a role for HPSE in chronic liver disease has not been demonstrated to date, the current study was aimed at investigating the involvement of HPSE in the pathogenesis of chronic liver injury. Herein, we revealed that HPSE expression increased in mouse livers after carbon tetrachloride (CCl4)-mediated chronic induction of fibrosis, but with a trend to decline during progression of the disease. In mouse fibrotic liver tissues HPSE immunostaining was restricted in necro-inflammatory areas, co-localizing with F4/80 macrophage marker and TNF-α. TNF-α treatment induced HPSE expression as well as HPSE secretion in U937 macrophages. Moreover, macrophage-secreted HPSE regulated the expression of α-SMA and fibronectin in hepatic stellate LX-2 cells. Finally, HPSE activity increased in the plasma of patients with liver fibrosis but it inversely correlated with liver stiffness. Our results suggest the involvement of HPSE in early phases of reaction to liver damage and inflammatory macrophages as an important source of HPSE. HPSE seems to play a key role in the macrophage-mediated activation of hepatic stellate cells (HSCs), thus suggesting that HPSE targeting could be a new therapeutic option in the treatment of liver fibrosis

    Heparanase activity in alveolar and embryonal rhabdomyosarcoma: implications for tumor invasion

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rhabdomyosarcoma (RMS) is a malignant soft tissue sarcoma of childhood including two major histological subtypes, alveolar (ARMS) and embryonal (ERMS) RMS. Like other human malignancies RMS possesses high metastatic potential, more pronounced in ARMS than in ERMS. This feature is influenced by several biological molecules, including soluble factors secreted by tumor cells, such as heparanase (HPSE). HPSE is an endo-β-D-glucuronidase that cleaves heparan sulphate proteoglycans.</p> <p>Methods</p> <p>We determined HPSE expression by Western blot analysis in ARMS and ERMS cells lines and activity in supernatants by an ELISA assay. Stable <it>HPSE </it>silencing has been performed by shRNA technique in RH30 and RD cell lines and their invasiveness has been evaluated by Matrigel-invasion assay. HPSE activity and mRNA expression have also been quantified in plasma and biopsies from RMS patients.</p> <p>Results</p> <p>HPSE expression and activity have been detected in all RMS cell lines. Stable <it>HPSE </it>silencing by shRNA technique determined a significant knockdown of gene expression equal to 76% and 58% in RH30 and RD cell lines respectively and induced a less invasive behaviour compared to untreated cells. Finally, we observed that <it>HPSE </it>mRNA expression in biopsies was higher than in foetal skeletal muscle and that plasma from RMS patients displayed significantly more elevated HPSE levels than healthy subjects with a trend to higher levels in ARMS.</p> <p>Conclusion</p> <p>In conclusion, our data demonstrate for the first time HPSE expression and activity in RMS and highlight its involvement in tumor cell invasion as revealed by shRNA silencing. Moreover, HPSE expression in RMS patients is significantly higher with respect to healthy subjects. Further studies are warranted to assess possible relationships between HPSE and clinical behaviour in RMS.</p

    Collagen Fiber Array of Peritumoral Stroma Influences Epithelial-to-Mesenchymal Transition and Invasive Potential of Mammary Cancer Cells

    Get PDF
    : Interactions of cancer cells with matrix macromolecules of the surrounding tumor stroma are critical to mediate invasion and metastasis. In this study, we reproduced the collagen mechanical barriers in vitro (i.e., basement membrane, lamina propria under basement membrane, and deeper bundled collagen fibers with different array). These were used in 3D cell cultures to define their effects on morphology and behavior of breast cancer cells with different metastatic potential (MCF-7 and MDA-MB-231) using scanning electron microscope (SEM). We demonstrated that breast cancer cells cultured in 2D and 3D cultures on different collagen substrates show different morphologies: i) a globular/spherical shape, ii) a flattened polygonal shape, and iii) elongated/fusiform and spindle-like shapes. The distribution of different cell shapes changed with the distinct collagen fiber/fibril physical array and size. Dense collagen fibers, parallel to the culture plane, do not allow the invasion of MCF-7 and MDA-MB-231 cells, which, however, show increases of microvilli and microvesicles, respectively. These novel data highlight the regulatory role of different fibrillar collagen arrays in modifying breast cancer cell shape, inducing epithelial-to-mesenchymal transition, changing matrix composition and modulating the production of extracellular vesicles. Further investigation utilizing this in vitro model will help to demonstrate the biological roles of matrix macromolecules in cancer cell invasion in vivo

    Substrate Type and Concentration Differently Affect Colon Cancer Cells Ultrastructural Morphology, EMT Markers, and Matrix Degrading Enzymes

    Get PDF
    : Aim of the study was to understand the behavior of colon cancer LoVo-R cells (doxorubicin-resistant) vs. LoVo-S (doxorubicin sensitive) in the initial steps of extracellular matrix (ECM) invasion. We investigated how the matrix substrates Matrigel and type I collagen-mimicking the basement membrane (BM) and the normal or desmoplastic lamina propria, respectively-could affect the expression of epithelial-to-mesenchymal transition (EMT) markers, matrix-degrading enzymes, and phenotypes. Gene expression with RT-qPCR, E-cadherin protein expression using Western blot, and phenotypes using scanning electron microscopy (SEM) were analyzed. The type and different concentrations of matrix substrates differently affected colon cancer cells. In LoVo-S cells, the higher concentrated collagen, mimicking the desmoplastic lamina propria, strongly induced EMT, as also confirmed by the expression of Snail, metalloproteases (MMPs)-2, -9, -14 and heparanase (HPSE), as well as mesenchymal phenotypes. Stimulation in E-cadherin expression in LoVo-S groups suggests that these cells develop a hybrid EMT phenotype. Differently, LoVo-R cells did not increase their aggressiveness: no changes in EMT markers, matrix effectors, and phenotypes were evident. The low influence of ECM components in LoVo-R cells might be related to their intrinsic aggressiveness related to chemoresistance. These results improve understanding of the critical role of tumor microenvironment in colon cancer cell invasion, driving the development of new therapeutic approaches

    Inhibition of heparanase protects against chronic kidney dysfunction following ischemia/reperfusion injury

    Get PDF
    Renal ischemia/reperfusion (I/R) injury occurs in patients undergoing renal transplantation and with acute kidney injury and is responsible for the development of chronic allograft dysfunction as characterized by parenchymal alteration and fibrosis. Heparanase (HPSE), an endoglycosidase that regulates EMT and macrophage polarization, is an active player in the biological response triggered by ischemia/reperfusion (I/R) injury. I/R was induced in vivo by clamping left renal artery for 30 min in wt C57BL/6J mice. Animals were daily treated and untreated with Roneparstat (an inhibitor of HPSE) and sacrificed after 8 weeks. HPSE, fibrosis, EMT-markers, inflammation and oxidative stress were evaluated by biomolecular and histological methodologies together with the evaluation of renal histology and measurement of renal function parameters. 8 weeks after I/R HPSE was upregulated both in renal parenchyma and plasma and tissue specimens showed clear evidence of renal injury and fibrosis. The inhibition of HPSE with Roneparstat-restored histology and fibrosis level comparable with that of control. I/R-injured mice showed a significant increase of EMT, inflammation and oxidative stress markers but they were significantly reduced by treatment with Roneparstat. Finally, the inhibition of HPSE in vivo almost restored renal function as measured by BUN, plasma creatinine and albuminuria. The present study points out that HPSE is actively involved in the mechanisms that regulate the development of renal fibrosis arising in the transplanted organ as a consequence of ischemia/reperfusion damage. HPSE inhibition would therefore constitute a new pharmacological strategy to reduce acute kidney injury and to prevent the chronic pro-fibrotic damage induced by I/R

    Eparanasi: un nuovo biomarker di fibrosi e un potenziale target farmacologico per ridurre la progressione del danno renale cronico

    Get PDF
    Il trattamento poli-farmacologico ha determinato, nel corso degli anni, un significativo rallentamento della progressione della malattia renale cronica verso lo stadio di uremia terminale, ma siamo ancora distanti dallo sviluppo di interventi terapeutici in grado di bloccare questo inesorabile e irreversibile processo. Studi clinico-patologici hanno chiaramente dimostrato che il principale elemento coinvolto nel danno renale è la fibrosi tubulo-interstiziale e che il meccanismo patogenetico alla base di questa condizione ha inizio in larga parte nel compartimento tubulare. In particolare, il processo di transizione epitelio-mesenchimale gioca un ruolo importante nella genesi del danno cronico. Durante questo processo, le cellule epiteliali tubulari subiscono un incremento significativo di markers di superficie di natura mesenchimale e, grazie al rimodellamento del citoscheletro e alla degradazione della membrana basale, sono in grado di migrare nell'interstizio dove svolgono un ruolo chiave nel processo patogenetico. In questo contesto, sembra avere un ruolo chiave l'enzima eparanasi, una endo-β-D-glucuronidasi che taglia le catene dell'eparan-solfato a livello di siti specifici intracatena, e partecipa attivamente alla degradazione e al rimodellamento della matrice extracellulare. La degradazione dei vari costituenti dell'ECM, inclusi i proteoglicani eparan-solfato fa-vorisce il rilascio di fattori trofici quali il FGF-2 che induce l'espressione dei marcatori mesenchimali alfa-SMA, VIM e FN, porta alla degradazione della membrana basale mediante la secrezione di metalloproteinasi della matrice ed aumenta la motilità cellulare. L'epressione dell'eparanasi è regolata da fattori di trascrizione, dalla metilazione del DNA e da varie molecole endogene. L'importanza di questo enzima è stata confermata clinicamente dal riscontro di una sua iperespressione in preparati istologici di biopsie effettuate in soggetti affetti da nefropatie croniche (per esempio, nefropatia diabetica). Pertanto visto l'importante ruolo dell'eparanasi sono in fase di standardizzazione numerose strategie per inibire la sua espressione genica e/o la sua attività enzimatica. Infine, è stato proposto il suo possibile utilizzo come biomarker di progressione del danno tubulo-interstiziale da utilizzare routinariamente in ambito nefrologico

    Involvement of heparanase in the pathogenesis of acute kidney injury: Nephroprotective effect of PG545

    Get PDF
    Despite the high prevalence of acute kidney injury (AKI) and its association with increased morbidity and mortality, therapeutic approaches for AKI are disappointing. This is largely attributed to poor understanding of the pathogenesis of AKI. Heparanase, an endoglycosidase that cleaves heparan sulfate, is involved in extracellular matrix turnover, inflammation, kidney dysfunction, diabetes, fibrosis, angiogenesis and cancer progression. The current study examined the involvement of heparanase in the pathogenesis of ischemic reperfusion (I/R) AKI in a mouse model and the protective effect of PG545, a potent heparanase inhibitor. I/R induced tubular damage and elevation in serum creatinine and blood urea nitrogen to a higher extent in heparanase over-expressing transgenic mice vs. wild type mice. Moreover, TGF-\u3b2, vimentin, fibronectin and \u3b1-smooth muscle actin, biomarkers of fibrosis, and TNF\u3b1, IL6 and endothelin-1, biomarkers of inflammation, were upregulated in I/R induced AKI, primarily in heparanase transgenic mice, suggesting an adverse role of heparanase in the pathogenesis of AKI. Remarkably, pretreatment of mice with PG545 abolished kidney dysfunction and the up-regulation of heparanase, pro-inflammatory (i.e., IL-6) and pro-fibrotic (i.e., TGF-\u3b2) genes induced by I/R. The present study provides new insights into the involvement of heparanase in the pathogenesis of ischemic AKI.Our results demonstrate that heparanase plays a deleterious role in the development of renal injury and kidney dysfunction,attesting heparanase inhibition as a promising therapeutic approach for AKI
    • …
    corecore